TSI2
no3
M2+M=A
A=5 3
1 3 M2(R)
A
A
χA(x) = x53
1x3=x28x+ 12
= 64 48 = 16 = 42
λ1=8+4
2= 6 λ2=84
2= 2
Spec(A) = {6,2}
x
yE6(A6I)x
y=1 3
13x
y=0
0
x3y= 0 x= 3y
x
yE2(A2I)x
y=3 3
1 1 x
y=0
0
x+y= 0 x=y
E6= Vect  3
1 E2= Vect  1
1
D=6 0
0 2 =P1AP P =31
1 1
N=x y
z t M2(R)
N2+N=D
ND =N(N2+N) = N3+N2= (N2+N)N=DN
N D
ND =x y
z t 6 0
0 2 =6x2y
6z2t
DN =6 0
0 2 x y
z t =6x6y
2z2t
6y= 2y6z= 2z
y=z= 0
N2+N=D
N2+N=x20
0y2+x0
0y=x2+x0
0y2+y=6 0
0 2
t2+t= 2
x2+x= 6
t2+t2 1 2x2+x6
23N
2 0
0 1 ;3 0
0 1 ;2 0
02;3 0
02
N2+N N
N2+N=D
MM2(R)N=x y
z t x, y, z, t R
M2(R)N=P1MP
P1P X =X0X=P1X0
Px
y=x0
y03xy=x0
x+y=y0
4x=x0+y0(L1+L2)
4y= 3y0x0(3L2L1)
P1=1
41 1
1 3
M=P NP 1
M=1
43x3yz+t3x+ 9yz3t
xy+zt x + 3y+z+ 3t
TSI2
P1M2P=P1MP ×P1MP =N2
M2+M=AP1(M2+M)P=P1AP
P1M2P+P1MP =D
N2+N=D
M2+M=AN2+N=D
MM2(R)M2+M=A
M=P NP 1N2+N=D
y=z= 0 x∈ {−3,2}t∈ {−2,1}
S=1
411 3
19,1
4812
4 0 ,1
44 12
44,1
47 3
1 5 
a
Ma=a11
2a+ 2
Madet Ma6= 0
det Ma=a11
2a+ 2 = (a1)(a+ 2) + 2 = a2+a=a(a+ 1)
Maa6= 0 a6=1
χMa(x) = xa+ 1 1
2xa2=(ax)11
2 (ax)+2 = (ax)(ax+ 1)
Spec(Ma) = {a, a + 1}
Ma
x
yEa(AaI)x
y=11
2 2 x
y=0
0
⇒ −xy= 0 y=x
x
yEa+1 (A(a+ 1)I)x
y=21
2 1 x
y=0
0
2x+y= 0 y=2x
Ea= Vect  1
1 E1+a= Vect  1
2
Da=a0
0 1 + a=P1MaP P =1 1
12
P1P X =X0X=P1X0
Px
y=x0
y0x+y=x0
x2y=y0
x= 2x0+y0(2L1+L2)
y=x0y0(L1L2)
P1=2 1
11
a b DaDb
MaMb=P DaP1P DbP1=P DaDbP1=P DbDaP1=P DbP1P DaP1=MbMa
MaMb=MbMa
n An
An=M1M2M3. . . Mn
An=P D1D2. . . DnP1nN
? A1=M1=P D1P1
? n An=P D1D2. . . DnP1
An+1 =An×Mn+1 =P D1D2. . . DnP1×P Dn+1P1=P D1D2. . . DnDn+1P1
n+ 1
? n >1
D1D2. . . Dn=1 0
0 2 2 0
0 3 . . . n0
0n+ 1 =n! 0
0 (n+ 1)!
An=1 1
12n! 0
0 (n+ 1)! 2 1
11
An=(1 n)n!n.n!
2n.n! (2n+ 1)n!
TSI2
(un)n>1(vn)n>1u1=2v1= 4
nN, un+1 = (n1)unvnvn+1 = 2un+ (n+ 2)vn.
un+1
vn+1 =n11
2n+ 2 un
vn=Mnun
vn
n>1
un
vn=Mn1. . . M2M1u1
v1=M1M2. . . Mn1u1
v1=An12
4
nN, un=2n!vn= 4n!
E=R3[X]
f E P E f(P)
f(P)(X) = 3XP (X) + X2P0(X), P 0P.
E(1, X, X2, X3)
dim E= 4
f E f
E
P, Q E λ, µ R
f(λP +µQ)(X) = 3X(λP +µQ)(X) + X2(λP +µQ)0(X)
=3X(λP (X) + µQ(X)) + X2(λP 0(X) + µQ0(X))
=λ(3XP (X) + X2P0(X)) + µ(3XQ(X) + X2Q0(X))
f(λP +µQ)(X) = λf(P)(X) + µf(Q)(X)
f
f(1)(X) = 3X
f(X)(X) = 3X2+X2=2X2
f(X2)(X) = 3X3+ 2X3=X3
f(X3)(X) = 3X4+ 3X4= 0
E
f E
1 / 12 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !