TSI1
no3
t E(t)
E(t) = I+tA +t2
2A2.
A3= 0 A3
E(s)E(t) = I+sA +s2
2A2I+tA +t2
2A2
=I+tA +t2
2A2+sA +stA2+s2
2A2=I+ (s+t)A+s2+ 2st +t2
2A2
=I+ (s+t)A+(s+t)2
2A2=E(s+t)
(s, t)R2E(s)E(t) = E(s+t).
tRnE(t)n=E(nt)
? n = 0
? n Nn
E(t)n+1 =E(t)n×E(t)
=E(nt)×E(t)
=E(nt +t) = E((n+ 1)t)
? n
tR,nN, E(nt) = E(t)n.
E(tt) = E(t+ (t)) = E(t)E(t) = E(t)E(t) = E(0) = I
E(t) (E(t))1=E(t)
λ1, λ2λ3R
λ1I+λ2A+λ3A2= 0
A3= 0
A
λ1A+λ2A2= 0
λ1A2= 0
A26= 0 λ1=0=λ2=λ3
(I, A, A2)Mp(R)
t7→ E(t)
E(s) = E(t) =s=t
(s, t)R2E(s) = E(t)
0 = E(s)E(t)=(st)A+s2t2
2A2
(I, A, A2)s=t A
E:t7→ E(t)RMp(R)
A=
011
001
000
A2=
001
000
000
A3= 0
A3E(t) =
1t t +t2
2
0 1 t
0 0 1
B0= (
e1,
e2)R2A=46
11∈ M2(R)
fR2A
f
χf(x) = x4 6
1x+ 1 =x23x+ 2 = (x1)(x2)
Spec(f) = {1,2}
f
f
(x, y)E1
(AI)x
y= 0 3x6y= 0
x2y= 0 x= 2y
(x, y)E2
(A2I)x
y= 0 2x6y= 0
x3y= 0 x= 3y
B= (
u ,
v) = (2,1),(3,1)
A=P DP 1P=2 3
1 1 D=1 0
0 2
TSI1
P1
Px
y=x0
y02x+ 3y=x0
x+y=y0y=x02y0(L12L2)
x=x0+ 3y0(3L2L1)
P1=1 3
12
Dn=1 0
0 2n
A0=P D0P1k Ak=P DkP1
Ak+1 =A×Ak=P DP 1×P DkP1=P DDkP1=P Dk+1P1
nN, An=P DnP1
P DkP1=2 3
1 1 1 0
0 2n1 3
12
=2 3 ×2n
1 2n1 3
12=2+3×2n63×2n+1
1+2n32n+1
An=2+3×2n63×2n+1
1+2n32n+1
t et= lim
n+ n
X
k=0
tk
k!!
t n
En(t) =
n
X
k=0
tk
k!Ak=
n
X
k=0
tk
k!2+3×2k63×2k+1
1+2k32k+1
En(t) =
2Pn
k=0 tk
k!+ 3 ×Pn
k=0
(2t)k
k!6Pn
k=0 tk
k!6×Pn
k=0
(2t)k
k!
Pn
k=0 tk
k!+Pn
k=0
(2t)k
k!3Pn
k=0 tk
k!2Pn
k=0
(2t)k
k!
tRE(t)E(t) = a(t)b(t)
c(t)d(t)
a(t) = lim
n+an(t) ; b(t) = lim
n+bn(t) ; c(t) = lim
n+cn(t) ; d(t) = lim
n+dn(t).
E(t) = 3e2t2et6et6e2t
et+e2t3et2e2t
E(t) = 36
12e2t+2 6
1 3 et
tR, E(t) = e2tQ+etR Q =36
12R=2 6
1 3
Q2=Q, R2=R, QR =RQ = 0
qq=q r r=r q r
Im q= Vect(3,1) Im r= Vect(2,1)
Ker q= Vect(2,1) = Im rKer r= Vect(3,1) = Im q q r= 0 rq= 0
qR
vR
u r R
uR
v
(s, t)R2
E(t)E(s)=(e2tQ+etR)(e2sQ+esR) = e2t+2sQ2+e2tesQR +ete2sRQ +et+sR2
=e2(s+t)Q+et+sR=E(t+s)
(s, t)R2E(s)E(t) = E(s+t).
E(t)n=E(nt)E(t)1=E(t)
E(t) = E(s)
(e2te2s)Q+ (etes)R= 0
(Q, R)M2(K)et=est=s
E:R→ M2(R)
t7→ E(t)
M.MT=MT.M (1)
M2(R)
I=1 0
0 1 A=0 1
1 0 C=01
1 0
AAT=ATA=A2=I CCT=CTC=I
A C
TSI1
A2=I
n
? n = 2k A2k= (A2)k=Ik=I
? n = 2k+ 1 A2k+1 = (A2)k×A=A
n An
A2=I
A A1=A
uR2B= (
i ,
j)
A
u(
i) =
j u(
j) =
i
A2=I u u=IdR2u
(AI)x
y=0
0x+y= 0
xy= 0 x=y
(AI)x
y=0
0x+y= 0
x+y= 0 x=y
uR(
i+
j)R(
i
j)
U=A+I
UTU= (A+I)TU= (AT+IT)U= (A+I)U=U2=UUT
U
U2= (A+I)2=A2+ 2AI +I= 2AI + 2A= 2(A+I) = 2U
Un= 2n1U
? n = 1 n= 2
? n
Un+1 =Un×U= 2n1U×U= 2n1U2= 2n1×2U= 2nU
nN, Un= 2n1U
(Un)TUn= (2n1U)T2n1U= 4n1UTU= 4n1UUT=Un(Un)T
UnnN
E2M2(R)
A+C=0 0
2 0
(A+C)(A+C)T=0 0
2 0 0 2
0 0 =0 0
0 4
(A+C)T(A+C) = 0 2
0 0 0 0
2 0 =4 0
0 0
(A+C)(A+C)T6= (A+C)T(A+C)A C E2
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !