(ak)n= dim E E
E
k ak+1 > akak
ak+1 >ak+ 1
k ak>k+a0
an+1 >n+1+a0>n+ 1
FNak=ak+1
F
N
F
p∈[[1, n]] F F ap=ap+1
k < p ak6=ak+1 p∈[[1, n]]
• ∀k∈[[0, p −1]] dim Ker fk6= dim Ker fk+1
•dim Ker fp= dim Ker fp+1
p∈[[1, n]]
• ∀k∈[[0, p −1]] Ker fk6= Ker fk+1
•Ker fp= Ker fp+1
k>p∀k∈[|p, +∞[|Ker fk= Ker fp
? k =p
? k p Ker fk= Ker fp
Ker fk⊂Ker fk+1 Ker fp⊂Ker fk+1
x∈Ker fk+1 f(x)∈Ker fkf(x)∈Ker fp
fpf(x)=0=fp+1(x)x∈Ker fp+1
Ker fp= Ker fp+1 x∈Ker fp
Ker fk+1 ⊂Ker fp
?
∀k∈[|p, +∞[|Ker fk= Ker fp
E= Ker fp⊕Im fp
? x ∈Ker fp∩Im fpfp(x) = 0 y∈E x =fp(y)
f2p(y) = fpfp(y)=fp(x) = 0
y∈Ker f2pKer f2p= Ker fp
y∈Ker fp
x=fp(y)=0
Ker fp∩Im fp={0}
?dim Ker fp+ dim Im fp= dim E