X
tXtAAX =t(AX)AX ≥0
tXtAAX = 0 =⇒AX = 0 =⇒X= 0
P∈ On(R)
tPtAAP = diag(λ1, . . . , λn)λi>0
S=tPdiag(pλ1,...,pλn)P
O=AS−1A=OS tOO =tS−1tAAS−1=In
O∈ On(R)A=OS
A=OS S2=tAA
λ∈Sp(tAA)
Ker(tAA −λIn) = Ker(S2−λIn)
Ker(S2−λIn) = Ker(S−√λIn)⊕Ker(S+√λIn)
λ > 0
Ker(S+√λIn) = {0}
Sp S⊂R∗
+λ∈Sp(tAA)
Ker(tAA −λIn) = Ker(S−λIn)
S
Mn,1(R) = ⊕
λ∈Sp(tAA)Ker(tAA −λIn)
A=tP P A
P A
A=tQDQ Q ∈ On(R)
D= diag(λ1, . . . , λn)λi≥0λi>0A
P= ∆Q∆ = diag(√λ1,...,√λn)
Vect S++
n(R) = Sn(R)
tXAX =Pk
i=1 λitXAiXtXAiX≥0
|tXAX| ≤ Pk
i=1 |λi|tXAiX=tXBX
B=In
A X |tXAX| ≤ tXX
λ|λ| ≤ 1|det A| ≤ 1 = det B
λiB∈ S++
n(R)
B=C2C∈ S++
n(R)A0=C−1AC−1∈ Sn(R)
X∈Rn
|tXA0X|=t(C−1X)A(C−1X)≤t(C−1X)B(C−1X) = tXX
|det A0| ≤ 1|det A| ≤ (det C)2= det B
A
A=tP DP P ∈ On(R), D = diag(λ1, . . . , λn)λi>0
C=tP∆P∆ = diag(1/√λ1,...,1/√λn)
tD=DtXDX =t(CX)B(CX)≥0D∈ S+
n(R)
D=tQD0Q Q ∈ On(R), D0= diag(µ1, . . . , µn)µi≥0
n
Y
i=1
(1 + µi)1/n ≥1 +
n
Y
i=1
µ1/n
i
µiµi
x7→ ln(1 + ex)
∀a1, . . . , an∈R,ln 1+e1
nPn
i=1 ai≤1
n
n
X
i=1
ln (1 + eai)