Unite 5 Les racines et les puissances

publicité
k
MA2OSPAX
Unite 5 Les racines et les
puissances
(Chapitre 4 du texte
—
p.202
—
253)
Ce Iivret appartient a
,
f)iTA
Unite: Les racines et les puissances
RAS
1Ol.A.2. Nombre irrationnels (identifier, simplifier, ordonner) (Lecon 1 et 2)
Lecon 1: Revision La famille des nombres. radicales. carré et cubipues
+
Les nombres naturels strictement positifs
N
Les nombres naturels
N
Les nombres entiers
Z
{O, 1, 2, 3,
Q
nombres rationnels
Tout nombres qui peuvent être exprime dans Ia forme
nombres entiers et b
{1, 2, 3,
..,
oü a et b sont des
0.
Tous les nombres décimaux qui terminent et periodiques sont rationnels.
Ex: 5; —; 0,6; 5,345
Q
Les nombre irrationnels
Tout nombres qui ne peuvent pas être exprimé dans Ia forme
des nombres entiers et b
oü a et b sont
0.
Tous les nombres décimaux qui ne terminent pas et qui ne se répétent pas sont
irrationnels.
Ex:
Les nombres reels
]R
Tous les nombres naturels, entiers, irrationnels et rationnels ensemble.
c,\J
Ex: Décidez si les nombres suivants sont rationnels ou irrationnels.
a)%
(2
b)J
d)t
1E
e)
g)3,52931345...
1. 411/Z(.
c) 5456
f)q
h)—1,131313... g
Ex: Queue(s) famille(s)?
a) 44
b)-3
c)O
d)519
e) 1,352631354...
f)—2,3--Z
N
3
La terminologie des radicales:
Th
f
L’Indki. . n IRadical
Radicande= x
a mclne csfle eat un numéro oil, quand on le multlplle par lul-mSme, eat égale
a un numéro donné.
Ex: Laraclnecarréede4eet2, car2 •24
c.-a-d.41 =2
SI Ia racine carrée d’un numéro
cane parfait
a un nornbre enter, ce numéro a’appelle un
Er 1,4,9, 16,25,36,49,64,81,100,...
(
1sc (etrre3
Er Trouvez lee moines carréee aulvantea
bhThi’7
c)1225
Cheque numéro poellive a 2 raclries carrées poesibler une racine carrée
poeltlve et une racine carrée nigatve
Er Laradnecarréedel6peutIlre4ou4parceque:
4•4=16
at
4•4=16
Pour reprieenter Ia raclne carrée principale ou poeltive, on écit ,/i =4
Pour repreeenter Ia raclne carrée negative, on écrlt
Eatce queiPi
a possible?
-&
‘wi.
=
-4
Ex: Evaluez (si possible):
a) —v’
—
d) ./—49
z’2 0
b) iv’400
e)
J
Z
c) 12500
f) go,64
La racine cubique est un numéro oü, quand on le multiplie par Iui-même 3 fois,
est egal a un numéro donné.
Ex: La racine cubique de 8 est 2, car 2
•2•2=8
Si Ia racine cubique d’un numéro est un nombre entier, ce numéro s’appelle un
cube parfait.
Ex: 1, 8,27,64, 125, 216,
Ex: Calculez les racines suivantes si possibles:
a)Vc4’( b)VT
333 c)V Z?d)VE
iJ-1iocci
L’estimation de radicaux:
Pour estimer a valeur dune racine dun numéro qul n’est pas une valeur parfaite,
utilisez les valeurs des racines que vous connaissez pour faire une estimation
raison n able.
Ex:
Estimez a valeur des racines suivantes:
a)V
b)V
:
q
—‘-—
t
JIiLI
34
-i V’T(Pui
j’rvir Jo’7f
Utilisez le tableau suivant pour vous aider avec vos estimations:
xl
2
5
3
3
(
1
( Z
10
qc q (
(o
8
zi 3” c(z
(Z
/
9
7
6
C(
(
x2
4
3
Z
IZ
(co
?/
Ordonné les valeurs numérigues
Ordre croissant: petit
-
grand
Ordre décroissant: grand
-
petit
Ex: Placez les valeurs suivantes en ordre:
a) Qrdre décroissant:
—;
—q’
CZo5T
C) .i’7u
J; VT;
I
;
—0.99
2
f/Of//;
1
—0.9;
fg?/77
C?
\J lô.
/
CL’
c
VTiT
4
1
-3
T
F1
UFTTW
J1
U
C
1
I
I
I
I
I
I
I
2
/
b) Ordre croissant:
113
-
13
;
‘
;
;
4II1IlllIIi1IIIIiIIIIlII)’
-4
4
-2
-1
1
0
2
7
l
t
c) Ordre croissant:
j
_22,,
1,25, -1,44
; ? /j
-4
Devoir:
-3
-2
-1
p.206 #1, 3, 5
p.211 #3,4,9, 12,14
0
1
2
q
P
LA SIMPLIFICATION DES RADICAUX
Un.sadical est simpliflé quand ii ne contient pas un carré parfait,(ou cube parfait
etc.) comme facteur.
Ex: Quel est le radical non simpliflé ici?
U4
Radical composélmixte (simpliflé):
Un nombre qui est le produit d’un nombre rationnel et un nombre irrationnel.
En genérale, un radical dans cette forme est considéré simplifié (s’il ne contient
pas un carré/cube parfait comme facteur de Ia radicande).
Ex:
4J
IRadical entier (non simpliflé):
Un nombre qui est seulement un radical.
Ex:
s/iT
En generale, un radical dans cette forme n’est pas simpliflé s’iI contient un
carré/cube parfait comme facteur de Ia radicande.
Ex:
-Jf
—‘
‘°
Prtci’
La simplification des radicaux (entier 4 compose)
Ex #1: Evaluez chaque question suivante. Qu’est-ce que tu remarques?
32
a)/Vi6
Ex #2: Evaluez chaque question suivante avec une calculatrice. Qu’est-ce que tu
rema rq ues?
a)Ji
b)
ec’ h
Ex #3: Evaluez chaque question suivante. Qu’est-ce que tu remarques?
a)
J8.27
6
b) J•Ji
Propriété de Ia multiplication
de radicaux
2 3
oü Iindice n est un nombre naturel positif!
Pour simplifier des radicales, on va utiliser cette propriété et les étapes
suivantes:
1. Divise Ia radicande en deux facteurs oü un des facteurs est le
plus grand carré parfait(ou cube parfait)!
2. Utilise Ia propriété de multiplication des radicaux pour separer Ia radicale en
deux radicales.
3. Evaluez Ia racine carré ou cubique du carré ou cube parfait et écrivez Ia
radicale compose qui reste...
Ex #1: Simplifie les radicales suivantes si possible
b)
a) i./
c)
1
-
d) lii
e) /i
TT
-
/
‘V
(4
t
.L
i3Z
1 &:;;
/
——-—‘
—
bU?<
(fVfl
Qire
1
a c,d—
Ex #2 : Simplifie les radicales suivantes si possible:
a) Viii
r
--
r(CcL
d)Jiz
b2
Ct
e) 4Jiii
JLO
I
acICci,i
Tu peux aussi utiliser a factorisation premiere pour simplifier des radicales
Ex #3. Simplifie les radicaux suivants en utilisant Ia factorisation premiere si
possible:
a) %J&
b)
,—-
---
IZ
11
/
/\
i-1
(OZ
//\
7_Z
I I
/\
C,
I r\
1 2
1
3Z 3
/\ /‘
3_f, 3
-
?Jz•
(/7
r—
zJ5 ZZ
-
0
c)i
/\
—
2-
*J
Chanaer de a forme composée a Ia forme entière
(C’est-à-dire... remettre Ia valeur sans radical sous forme de radical)
Ex #1: Change les radicaux suivants
a) 2
6TT
a Ia forme entière:
d)3V
c)2V
\rjTi
>I22
\JL7
(
Devoir:
p.218#4, 5, 11,18,20,21,23
T
V
Téléchargement
Random flashcards
Ce que beaucoup devaient savoir

0 Cartes Jule EDOH

Le lapin

5 Cartes Christine Tourangeau

Chapitre 1

11 Cartes Sandra Nasralla

mOHA

2 Cartes Mohamed Ait Baha

Créer des cartes mémoire