Ch11 : Multiples et diviseurs
Objectifs
•Connaître et utiliser les critères de divisibilité par 2, 5 et 10.
•Connaître et utiliser les critères de divisibilité par 3, 4 et 9.
•Choisir les opérations qui conviennent au traitement de la situa-
tion étudiée.
•Calculer le quotient et le reste d’une division d’un entier par un
entier dans des cas simples.
•Connaître et utiliser le vocabulaire associé (dividende, diviseur,
quotient, reste).
1 Multiples et diviseurs
Définition (Multiples)
Soient aet bdeux nombres entiers positifs. Lorsque le reste de la division de apar best égal à zéro, on dit que aest
un multiple de b, ou que best un diviseur de a, ou encore que aest divisible par b.
Exemple : 15 est un multiple de 3, car 15 = 3 ×5.
Autrement dit, 3est un diviseur de 15, ou encore 15 est divisible par 3.
17 n’est pas un multiple de 3, car 17 = 3 ×5 + 2.
2 Critères de divisibilité
Théorème (Critères de divisibilité)
Pour savoir si un nombre donné est divisible par 2,3,4,5,9ou 10, on utilise les critères suivants :
•Un nombre sera divisible par 2s’il se termine par 0,2,4,6ou 8.
•Un nombre sera divisible par 3si la somme de ses chiffres est un multiple de 3.
•Un nombre est divisible par 4lorsque le nombre formé par les deux derniers chiffres est divisible par 4.
•Un nombre sera divisible par 5s’il se termine par 0ou 5.
•Un nombre sera divisible par 9si la somme de ses chiffres est un multiple de 9.
•Un nombre sera divisible par 10 s’il se termine par 0.
Exemple :
–126 est divisible par 2car le chiffre des unités est 6,
mais 125 n’est pas divisible par 2car le chiffre des unités est 5.
–252 est divisible par 3car la somme de ses chiffres 2 + 5 + 2 = 9 est multiplesde 3,
mais 254 n’est pas divisible par 3car la somme de ses chiffres 2 + 5 + 3 = 10 n’est pas multiples de 3.
–944 est divisible par 4car 44 est divisible par 4,
mais 945 n’est pas divisible par 4car 45 n’est pas divisible par 4.
–155 est divisible par 5car le chiffre des unités est 5,
mais 156 n’est pas divisible par 5car le chiffre des unités est 6.
–52 362 est divisible par 3car la somme de ses chiffres 5 + 2 + 3 + 6 + 2 = 18 est multiple de 9,
mais 52 363 n’est pas divisible par 9car la somme de ses chiffres 5 + 2 + 3 + 6 + 3 = 19 n’est pas multiple de 9.
–2 610 est divisible par 10 car le chiffre des unités est 0,
mais 2 611 n’est pas divisible par 10 car le chiffre des unités est 1.
Exemple : Le nombre 4140
– est divisible par 2, car il se termine par le chiffre 0.
– est divisible par 3, car 4 + 1 + 4 + 0 = 9 qui est un multiple de 3.
– est divisible par 4, car 40 est divisible par 4.
– est divisible par 5, car il se termine par le chiffre 0.
– est divisible par 9, car 4 + 1 + 4 + 0 = 9 qui n’est pas un multiple de 9.
Remarque : Pour savoir si un nombre est divisible par 3, on peut calculer la somme des chiffres du nombre obtenu jusqu’à
ce qu’on trouve un seul chiffre.
Pour 563 387 982, on calcule : 5 + 6 + 3 + 3 + 8 + 7 + 9 + 8 + 1 = 51.
Puis on calcule 5 + 1 = 6.
6n’est pas divisible par 3donc 563 387 982 n’est pas divisible par 3.
1