X m σ2
X=Xm
σX
E(X)=0, σ(X)=1
(Xn)n1m
σ2
Mn=1
n
n
X
k=1
Xk
E(Mn) = m, σ(Mn) = σ
n
(Xn)nNm
σ
nN
Mn=1
n
n
X
k=1
Xk
ε > 0, P ([|Mnm|>ε])
n+0
(Mn)m
Mn
6
©
G6
G10 6 10
1000 10000
(Xn)nN
X1+··· +Xn
n
n+
E(Xn)
1
(Xn)nNNX
N
(Xn)nNX
kNP([Xn=k])
n+P([X=k])
nNpQ
(XN)NN
XN→ H(N, n, p)
Np NN
kJ0, nK
P([XN=k])
N+n
kpk(1 p)nk
(XN)NN
n p
N>10nH(N, n, p)
B(n, p)
λ > 0 (Xn)nNnNXn→ B(n, λ
n)
kJ0, nK
P([Xn=k])
n+
λk
k!eλ
(Xn)nNλ
n p
np p 60,1n>30
(Xn)nNX F
X F
(Xn)nNX
xI Fn(x)
n+F(x)
G
a, b R, P (a<Xn< b)
n+P(a < X < b)
G
(Xn)nN
µ XnnNσ
nN
Mn=1
n
n
X
k=1
XkM
n=Mnµ
σ
n
(M
n)nN
ΦN(0,1) a b
a<b
P a < Mnµ
σ
n
< b!
n+Φ(b)Φ(a) = Zb
a
exp(x2
2)
2πx
Sn=
n
X
k=1
XkS
n=Sn
Pa < Sn
< b
n+Φ(b)Φ(a)
p]0,1[ (Sn)nN
nN, Sn→ B(n, p)
P(aS
nb)
n+Φ(b)Φ(a)
PaSnnp
npq b
n+Φ(b)Φ(a)
p]0,1[ (Sn)nNSn→ B(n, p)
P(aSnb)
P(a6Sn6b) = Panp
npq 6S
n6bnp
npq
Φbnp
npq Φanp
npq
B(n, p)N(np, npq)
n>30 np >5nq >5
P(Sn=k)a=b=k
0
k P (Sn=k)Pk1
26Sn6k+1
2
P(Sn=k)Φ k+1
2np
npq !Φ k1
2np
npq !
©50
20 30
1 / 10 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !