22 2008 2
7
u0∈[a, b]a6u06b n >1un=f(un−1)∈[a, b]f([a, b]) ⊂[a, b]
n∈Na6un6b
f u0< f(u0) (un)
n= 0 u0< f(u0) = u10
n un6un+1 f(un)6f(un+1)f
un+1 6un+2 n+ 1
(un) (un)
α(un)f
α= limn→+∞un+1 = limn→+∞f(un) = f(α)
u0> f(u0)
0u0> f(u0) = u1
n un>un+1 f(un)>f(un+1)f
un+1 >un+2 n+ 1
un+1 =√3 + u
u0= 1
f: [0,3] →[0,3] [0,3]
f(x) = √3 + x√f u1=
f(u0) = f(1) = √4 = 2 > u0(un)
α α =√3 + α α α2= 3 + α
α2−α−3=0 α1=1−√13
2α2=1 + √13
2α1<1 = u0
(un)α=1 + √13
2
f∀x, y ∈[a, b]x6y
x6y⇒f(x)>f(y)⇒f(f(x)) 6f(f(y))
f◦f un=f(un−1) = f(f(un−2))
u2n=f◦f(u2(n−1))
u0∈[a, b]u2n+1 =f◦f(u2n−1)
u1∈[a, b]
f◦f
u0−u2(u2n)u1−u3(u2n+1)
7
f0(x) = 2xarctan(x) + 1 [0,+∞[x>0 arctan(x)>0 2xarctan(x)>0
f0(x)>1 [0,+∞[ ] − ∞,0] x60 arctan(x)60
2xarctan(x)>0f0(x)>1 ] − ∞; 0] f
Rf(R)
f(R) = R
11 2007