fkCR R
+
f0
k=log kfkr f(r)
k= (1)r(log k)rfk
α0fk
αR
+αα0⇒ |f(r)
k(α)| ≤ (log k)r
kα0+1 .
k
Pk1f(r)
k[α0; +[
α0r(Hr)S=Pk1fk
CrI= [α0; +[α
S(r)(α) = X
k1
f(r)
k(α).
(H0)Pk1fk(α0)
Pk1fkI fk
C1IPk1f0
kS C1I S0=Pk1f0
k
r S CrI S(r)=Pk1f(r)
k
Pk1f(r)
k(α0)f(r)
kC1IPk1f(r+1)
kI
Pk1f(r)
kIPk1f(r+1)
kS(r)
S(r+1) =Pk1f(r+1)
k(Hr)
r S CI α0R
+S
CR
+
rNS(r)=X
k1
f(r)
k.
fk
fk
x y λ
kNxyfk(x)fk(y)
xyX
k1
fk(x)X
k1
fk(y)
kNfk(λx + (1 λ)y)λfk(x) + (1 λ)fk(y)
X
k1
fk(λx + (1 λ)y)λX
k1
fk(x) + (1 λ)X
k1
fk(y)
.
t7→ 1
tα+1 R
+k
t[k;k+ 1] 1
(k+ 1)α+1 1
tα+1 1
kα+1 .
t k k + 1
1
(k+ 1)α+1 Zk+1
k
dt
tα+1 1
kα+1 .
n N n
k=n N
N+1
X
k=n+1
1
kα+1 ZN+1
n
dt
tα+1 .
N
ρα(n)Z
n
dt
tα+1
ρα(n)1
αnα.
n+ 1 N
ZN+1
n+1
dt
tα+1
N
X
k=n+1
1
kα+1
N
Z
n+1
dt
tα+1 ρα(n)
1
α(n+ 1)αρα(n).
1
α(n+ 1)αρα(n)1
αnα.
n
0nα(Sασα(n)) = nαρα(n)1
α
Sα=σα(n)+o1
α
n= 1 σα(1) = 1 o(1) limα→∞ Sα=
1
Sα= 1 + ρα(1) ρα(1) 1
α
(1)
ρα(1) 1
α12α
α.
α t 7→ 2tlog 2
h t R
+
h(t) = log t
tα+1 .
t[3; +[
h0(t) = 1(α+ 1) log t
tα+2 .
t3 log t > log e= 1 h0[3; +[h
ρα(3) = S(α)σα(3) αρα(3) ρ0
α(3)
S0(α) +
3
X
k=1
log k
kα+1
ρ0
α(3) =
X
k=4
h(k).
h
ρ0
α(3) ≥ −
X
k=4 Zk
k1
h(t)dt
≥ −Z
3
h(t)dt
≥ −αlog t+ 1
α2tα
3
≥ −1 + αlog 3
α23α
αρα(3) 1
α(3α1αlog 3)/(α23α)
x x 1log x
x= 3ααρα(3) 1
αR
+
ασα(3) ρα(3) 1
α=
(Sα1
α) + σα(3) α
Sα1
αασα(3)
n(1)
σα(n) + 1
αnα1Sα1
ασα(n) + 1
α(n+ 1)α1
x α 7→ xαlog x
n
X
k=1
1
klog(n+ 1) γ
n
X
k=1
1
klog n .
0γ n
X
k=1
1
klog(n+ 1)!log(n+ 1) log n= log(1 + 1
n)
γ= limn→∞ Pn
k=1 1
klog(n+ 1)
Sαn ρα(n)
σα(n) (1) (nα(n+ 1)α)
α= 0.5
21
n1
n+ 1= 2 n+ 1 n
pn(n+ 1) =2
pn(n+ 1)(n+n+ 1) <1
n3/2
103n= 100
0.000993 S0.5
108108106
103S0.52.412874 σ0.5(100) 2.413869
S0.51032.611881
107n1014/3n46416
1/k3/2
S0.51012
107
hαR
+
f
f(ta + (1 t)b)tf(a) + (1 t)f(b)t= 0 t= 1
(a, b)f a < b
Zb
a
f(t)dt f(a) + f(b)
2.
f=hαa=k b =k+ 1
Zk+1
k
dt
tα+1 1
21
kα+1 +1
(k+ 1)α+1 .
n N n k =n N
ZN+1
n
dt
tα+1 1
2nα+1 +
N
X
k=n+1
1
kα+1 +1
2(N+ 1)α+1 .
N
1
αnα1
2nα+1 +ρα(n)
1
αnα1
2nα+1 ρα(n).
f
f(a)+(ta)f0(a)f(t)t=ah t =a+h a h h [ah;a+h]
f
Za+h
ah
f(t)dt 2hf(a).
f=hαa=k h = 1/2
Zk+1/2
k1/2
dt
tα+1 1
kα+1 .
n N n k =n+ 1
N
ZN+1/2
n+1/2
dt
tα+1
N
X
k=n+1
1
kα+1 .
N
ρα(n)Z
n+1/2
dt
tα+1 =1
αn+1
2α.
ρα(n)n
α= 0.5
1
αn+1
2α1
αnα+1
2nα+1 =22
2n+ 1 2
n+1
2n3
= 222n2n+ 1
p2n(2n+ 1) +1
2n3
=22
p2n(2n+ 1)(2n+2n+ 1) +1
2n3
=1
2n
2n+ 1(2n+2n+ 1) 4n
n2n+ 1(2n+2n+ 1)
=1
2np2n(2n+ 1) (2n1)
n2n+ 1(2n+2n+ 1)
=1
2n
2n(2n+ 1) (2n1)2
n2n+ 1(2n+2n+ 1)(p2n(2n+1)+2n1)
<1
2n
6n1
n2n22n(4n1)
<3
4nn.3n=1
4n5/2
n n (107/4)2/5n363 1012
S0.50.9995 107107
S0.5'2.612375298899 .
1 / 12 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !