Exercice On se place dans un repère orthonormé et, pour tout entier

publicité
Exercice
On se place dans un repère
orthonormé
et, pour tout entier naturel n, on définit les points
¡
¢
(A n ) par leurs coordonnées xn ; y n de la façon suivante :
½
x0
y0
=
=
−3
4
et pour tout entier naturel n :
½
xn+1
y n+1
=
=
0, 8xn − 0, 6y n
0, 6xn + 0, 8y n
1. a. Déterminer les coordonnées des points A 0 , A 1 et A 2 .
b. Pour construire les points A n ainsi obtenus, on écrit l’algorithme suivant :
Variables :
i , x, y, t : nombres réels
Initialisation :
x prend la valeur −3
y prend la valeur 4
Traitement :
Pour i allant de 0 à 20
Construire le point de coordonnées (x ; y)
t prend la valeur x
x prend la valeur . . . .
y prend la valeur . . . .
Fin Pour
Recopier et compléter cet algorithme pour qu’il construise les points A 0 à A 20 .
c. À l’aide d’un tableur, on a obtenu le nuage de points suivant :
5
b
b
b
4
b
b
3
b
2
b
b
1
b
b
1
−7 −6 −5 −4 −3 −2 −1
−1
b
2
3
4
5
b
6
7
−2
b
−3
b
b
−4
b
b
−5
b
b
−6
Identifier les points A 0 , A 1 et A 2 .
Quel semble être l’ensemble auquel appartiennent les points A n pour tout n entier
naturel ?
d. Dans le plan complexe, on nomme, pour tout entier naturel n, zn = xn + iy n l’affixe du
point A n .
Soit un = |zn |. Montrer que, pour tout entier naturel n, un = 5. Quelle interprétation
géométrique peut-on faire de ce résultat ?
1
Téléchargement
Random flashcards
amour

4 Cartes mariam kasouh

aaaaaaaaaaaaaaaa

4 Cartes Beniani Ilyes

Anatomie membre inf

0 Cartes Axelle Bailleau

TEST

2 Cartes Enrico Valle

Créer des cartes mémoire