◦
xp= limn(ep|xn) (Pk
i=1 xpep, xn)→Pk
i=1 |xp|2
k
X
i=1
|xp|2≤lim inf
k
X
i=1
xpep
kxnk.
Pk
i=1 |xp|2≤lim inf kxnk2P|xp|2<∞x=Pxpepp
(ep, xn)→(ep, x)F={y∈H|(y, xn)→(y, x)}F
xnenF=H xn* x
(ep, en) = δn,p →0n→+∞p en*0
={x|kxk ≤ 1}
⊂w⊂
w
en*0 0 ∈wx∈xn=x+αnenαn
kxnk= 1 αn=−(x, en) + p(x, en)2− kxk2+ 1 (xn, ep)=(x, ep)n>p
xn* x x ∈w w =
en*0emk+mkenk*0mk
mkm nk
menk*0
em6= 0 mk
E xn* x (xn)E0ϕn:`7→ `(xn)
ϕnkxnk kxnk→∞ `
sup |ϕn(`)|=∞ϕn(`) = `(xn)→`(x)
en
en*0 0
?
Tn∈ K(E, F )T∈ L(E, F )kTn−Tk → 0T(BE)
ε > 0NkTN−Tk< ε TN(BE)TN(BE)
ε
B(TNxi, ε)T x ∈T(BE)i TNx∈B(TNxi, ε)
kT x −T xik≤k(T−TN)xk+kTNx−TNxik+k(TN−T)xik ≤ 3ε.