Eléments de correction sujet 2
Introduction :
Rapide mise en perspective du programme de géométrie étudiée au collège et lycée (document ci-joint).
Il s’agit d’un problème avec une question ouverte. Il s’agit d’un problème avec prise d’initiative.
Cet exercice peut être résolu de plusieurs manières, par exemple :
- En utilisant les triangles semblables, les angles complémentaires, et l’angle plat.
Les connaissances utilisées dans ce cas sont mobilisables à partir du milieu du cycle 4 (de la classe de 4e).
- En utilisant un repère et les vecteurs colinéaires. Ces connaissances sont mobilisables en classe de 2nde,
- En utilisant un repère et les équations des droites. Ces connaissances sont mobilisables en classe de 2nde.
Compétences :
Extraire d’un document les informations utiles, les reformuler, les organiser, les confronter à ses
connaissances.
S’engager dans une démarche scientifique : expérimenter (sur une feuille de papier, tester,
valider)
Décomposer un problème en sous-problèmes.
Reconnaître des situations de proportionnalité et résoudre les problèmes correspondants.
Traduire en langage mathématique une situation réelle par exemple, à l’aide de configurations
géométriques, schéma, codage.
Choisir et mettre en relation différents cadres : numérique, géométrique, analytique.
Démontrer : utiliser un raisonnement logique et des règles établies (propriétés, théorèmes,
formules) pour parvenir à une conclusion.
Calculer avec des nombres rationnels, de manière exacte ou approchée, en combinant de façon
appropriée le calcul numérique et le calcul littéral.
Interpréter, formuler une réponse.
L’élève s’engage dans la démarche en mettant en relation le
problème d’alignement donné, le cadre géométrique des angles
et le cadre analytique des équations des droites
Il semble avoir fait une conjecture. Il organise sa démonstration
en deux étapes :
1. montrer que les angles sont égaux.
- identifier des triangles rectangles ABB’ et BCC’
- utilise correctement la notion d’angle complémentaire
2. affirme que les coefficients directeurs sont égaux.
- Il semble utiliser la propriété selon laquelle dans un repère, si
deux droites ont le même coefficient directeur et un point en
commun alors elles sont confondues.
Il conclut : rédige une phrase réponse affirmant que les points
sont alignés.
Il trace la droite(AC) et il constate par perception
visuelle que les points A, B et C sont alignés et il conclut
implicitement que l’angle ABC est plat.
Il utilise implicitement cette information pour justifier
que les angles 𝐴𝐵𝐵′
̂ et 𝐶𝐵𝐶′
̂ sont complémentaires.
C’est un raisonnement erroné.
Puis il affirme que les coefficients directeurs sont égaux,
sans préciser le repère ni de quelles droites il s’agit.
Quelques idées de remédiation :
On peut proposer à l’élève 1 d’écrire le calcul des angles pour lui faire prendre conscience qu’il a utilisé le fait que 𝐴𝐵𝐶
̂ est
un angle plat. A partir de sa réponse on peut essayer de l’amener à se corriger.
On peut lui rappeler d’utiliser les données sur les longueurs des triangles pour montrer qu’on a des triangles semblables et
ainsi conclure que les angles 𝐴𝐵𝐵′
̂ et 𝐵𝐶𝐶′
̂ sont égaux. Puis il peut montrer que l’angle 𝐴𝐵𝐶
̂ est plat.