PROBABILITES (RAPPELS)
1) Expérience aléatoire
Une expérience aléatoire est une expérience dont le résultat est dû au hasard, dont on ne peut pas
prévoir avec certitude le résultat, mais dont on connaît l'ensemble des résultats possibles, ou issues.
Dans un premier temps, nous ne considèrerons que des expériences ayant un nombre fini d’issues.
L’ensemble des issues est l’univers, généralement noté Ω.
2) Evénements
a) Définition
Un événement A est une partie de l’univers.
On dit que A est réalisé quand le résultat de l’expérience aléatoire appartient à A.
Un événement élémentaire est un événement ayant un seul élément, c'est-à-dire formé d'une seule
issue.
est l'événement impossible, aucune issue ne le réalise.
Ω est l'événement certain, toutes les issues le réalisent.
Exemple : on tire une carte dans un jeu de 32 cartes. L'univers Ω est l'ensemble des 32 cartes du
jeu.
On peut considérer les événements :
A : "la carte tirée est une dame"
B : "la carte tirée est une carte de carreau"
C : "la carte tirée est noire"
D : "la carte tirée est une figure"
E : "la carte tirée est le roi de coeur".
Chacun de ces événements peut être assimilé à une partie de l'univers.
b) Evénements contraires
Soit A un événement associé à une expérience aléatoire.
L'événement contraire de A, noté
A
, est formé de toutes les issues n'appartenant pas à A.
c) Intersection et réunion d'événements
Soit A et B deux événements du même univers (c'est-à-dire relatifs à la même expérience aléatoire).
AB
(intersection de A et B) est réalisé lorsque A et B sont réalisés ;
AB
est formé des
issues qui appartiennent à la fois à A et à B.
AB
(réunion de A et B) est réalisé lorsque A ou B est réalisé, c'est-à-dire lorsque l'issue de
l'expérience aléatoire appartient à au moins l'un des deux événements A ou B (elle appartient alors à
A et pas à B, ou à B et pas à A, ou à la fois à A et à B).
Exemple :
3) Probabilité
a) Loi faible des grands nombres
Lorsqu’on répète l’expérience aléatoire un très grand nombre de fois, les distributions des
fréquences obtenues (c'est-à-dire, pour chaque issue, le rapport entre le nombre de fois que cette
issue a été obtenue et le nombre total d'expériences) se rapprochent de nombres
1 2
, ,...,
n
p p p
associés aux différentes issues
e1, e2, ..en
, appelés probabilités de ces issues, et tels que .
0pi1
b) Loi de probabilité
Définir une loi de probabilité sur un univers fini Ω =
{e1, e2, .. en}
, c'est associer à chaque issue ei
(1 ≤ i ≤ n) sa probabilité pi, avec
1pi1
et
i=1
n
pi=1
.
Une loi de probabilité est souvent résumée par un tableau (sur la première ligne les issues, sur la
deuxième les probabilités associées).
pi est aussi la probabilité de l'événement élémentaire
.
c) Paramètres d'une loi de probabilité
On garde les mêmes notations ; on suppose de plus que les issues
e1, e2, ..en
sont des nombres
réels.
L' espérance de la loi de probabilité est :
=
i=1
n
piei
.
La variance de la loi de probabilité est :
V=
i=1
n
piei−2
ou encore
V=
i=1
n
piei
22
.
L' écart type de la loi de probabilité est :
=
V
.
d) Probabilité d’un événement
La probabilité
( )p A
d'un événement A est égale à la somme des probabilités des issues appartenant
à A, c'est-à-dire la somme des probabilités des événements élémentaires dont A est la réunion.
Cas particuliers
p=0; p =1
.
e) Loi équirépartie
Si tous les événements élémentaires ont la même probabilité p, la loi est appelée loi équirépartie ;
on dit qu'on est en situation d'équiprobabilité.
Alors
p=1
n
(avec n nombre total d'issues) et, si A est un événement comportant k éléments,
pA= k
n
.
f) Propriétés
Si A et B sont deux événements du même univers :
pAB= pA pB− pAB.
Si de plus
AB=∅
, on dit que A et B sont incompatibles (ou disjoints), et on a :
pAB= pA pB
( ) 1 ( )p A p A
= −
.
4) Variable aléatoire
a) Exemple
On lance un dé à 4 faces non truqué et une pièce équilibrée. Si on obtient au dé le 1 on perd 1€, le 3
on gagne 3€ et le 2 ou le 4 on gagne 4€. Si on obtient pile on perd 2€, et face on gagne 2€.
Soit X le gain (algébrique) du joueur.
Les valeurs possibles de X sont :
Leurs probabilités sont :
b) Définition
Une variable aléatoire X associe à une issue
i
e
un nombre réel
( )
i i
x X e
=
.
On définit la loi de probabilité de X à partir de la loi de probabilité définie sur
.
c) Espérance mathématique, variance, écart type d'une variable aléatoire
L' espérance de la variable aléatoire X prenant les valeurs
x1, x2,.. xm
est :
EX=
i=1
m
xipX=xi
.
La variance de la variable aléatoire X est :
VX=
i=1
m
pX=xixiEX2
ou encore
VX=
i=1
m
pX=xixi
2EX2
.
L' écart type de la variable aléatoire X est :
X=
VX
.
Ex :
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !