PCSI Physique
Elec6 : Réponse fréquentielle. 1
Elec6 :
R
EPONSE FREQUENTIELLE DE SYSTEMES
ELECTRIQUES LINEAIRES
:
NOTION DE FILTRE
Dans l’étude du régime sinusoïdal forcé des circuits linéaires, ont été introduites les notations
complexes et les impédances complexes de dipôles passifs soumis à une excitation sinusoïdale de
pulsation
ω
.
On sait que la réponse
(
)
s t
en régime sinusoïdal forcé a la même pulsation
ω
que l’excitation
(
)
(
)
cos
m e
e t E t
ω ϕ
:
(
)
(
)
cos
m s
s t S t
ω ϕ
= +
.
Son amplitude
m
S
est différente de
m
E
et elle est déphasée de
(
)
s e
ϕ ϕ
par rapport à
(
)
e t
.
On étudie la réponse fréquentielle d’un circuit linéaire à une excitation sinusoïdale :
(
)
m
S
ω
et
(
)
(
)
s e
ϕ ϕ ω
.
I. F
ONCTION DE TRANSFERT D
UN QUADRIPOLE LINEAIRE
.
1.
Définitions
.
a. Quadripôle
b. Ordre du système linéaire
c. Fonction de transfert
d. Décomposition d’une fonction de transfert en systèmes linéaires simples.
2.
Notion de filtre
.
a. Filtre parfait
b. Différents types de filtres
3.
Gain d’un filtre
.
4.
Diagramme de Bode
.
II. C
IRCUITS LINEAIRES DU
1
ER
ORDRE
.
1.
Circuit (R,C).
a. Fonctions de transfert
(
)
R
H j
ω
et
(
)
C
H j
ω
.
b. Diagramme de Bode de la réponse aux bornes du condensateur.
2.
Circuit (R,L).
a. Fonctions de transfert
(
)
R
H j
ω
et
(
)
L
H j
ω
.
b. Diagramme de Bode de la réponse aux bornes de la bobine.
3.
Cas d’un filtre actif : pseudo-intégrateur.
a. Fonctions de transfert
(
)
H j
ω
.
b. Diagramme de Bode de la réponse en sortie de l’AO.
III. C
IRCUIT LINEAIRE DU
2
ND
ORDRE
:
CAS DU CIRCUIT
(
R
,
L
,
C
)
SERIE
.
1.
Réponse aux bornes de la résistance.
a. Fonction de transfert.
b. Diagramme de Bode.
2.
Réponse aux bornes du condensateur.
a. Fonction de transfert.
b. Diagramme de Bode.
PCSI Physique
Elec6 : Réponse fréquentielle. 2
IV. R
ELATION ENTRE REPONSE FREQUENTIELLE ET REPONSE
TEMPORELLE
.
1.
Fonction de transfert et équation différentielle liant v
s
et v
e
.
2.
Fonction de transfert et régime libre du quadripôle.
3.
Fonction de transfert et réponse du quadripôle à un échelon.
4.
Stabilité des systèmes linéaires.
a. A partir de la fonction de transfert.
b. A partir de l’équation différentielle.
Questions de cours usuelles
1.
Qu’appelle-t-on « fonction de transfert » d’un quadripôle ? qu’est-ce que son gain en
amplitude ? son gain en décibel ? le déphasage qu’il introduit ?
2.
Qu’est-ce qu’un diagramme de Bode ? Quel est son (ses) intérêt(s) ?
Pour les circuits
(
)
,
R C
aux bornes de
R
ou de
C
;
(
)
,
R L
aux bornes de
R
ou de
L
;
(
)
, ,
R L C
série
aux bornes de
R
ou de
C
:
3.
Prévoir sans calcul la nature du filtre.
4.
Déterminer la fonction de transfert.
5.
Introduire la variable réduite
C
x
ω
ω
=
pour les filtres du premier ordre ou
0
x
ω
ω
=
pour les filtres
du second ordre.
6.
En déduire le gain en amplitude du filtre, son gain en décibel et le déphasage qu’il introduit
entre tension d’entrée et tension de sortie.
7.
Etudier le diagramme de Bode asymptotique :
a. Déterminer les équations des asymptotes de
(
)
log
GdB
ω
et de
(
)
log
ϕ ω
b. Rechercher d’éventuels points particuliers pour le gain en décibel ou le déphasage
(pulsations qui rendent le gain maximal, pulsations de coupures)
c. Compléter un tableau du genre :
Expression BF(
1
<<
x
) HF(
1
>>
x
)
1
x
=
( )
H jx
G
dB
(log x)
20log ( )
H jx
=
ϕ
(log x)
=
(
)
(
)
arg
H jx
d.
Tracer le diagramme de Bode asymptotique.
8.
A partir de la fonction de transfert du quadripôle, déterminer son comportement asymptotique :
dérivateur, suiveur ou intégrateur.
PCSI Physique
Elec6 : Réponse fréquentielle. 3
Objectifs
Savoirs :
Savoir ce qu’est une fonction de transfert complexe, et son lien avec le gain en amplitude du
quadripôle, son gain en décibel et le déphasage qu’il introduit.
Savoir ce qu’est une pulsation de coupure à
3
dB
.
Connaître la représentation graphique sous forme de diagramme de Bode.
Savoirs faire :
Etant donné un circuit passif ou actif, composé de dipôles linéaires
,
R L
et
C
(ex :
(
)
,
R C
,
(
)
,
R L
,
(
)
, ,
R L C
série, mais d'autres aussi ...) en régime sinusoïdal forcé alimenté par des sources de tension
ou de courant délivrant des signaux sinusoïdaux de pulsation
ω
:
Savoir déterminer sans calcul le comportement asymptotique du circuit et donc la nature du
filtre ainsi constitué (passe-bas, passe-haut, passe-bande, réjecteur de bande).
Savoir déterminer une fonction de transfert complexe
H
.
Pouvoir déduire d’une fonction de transfert complexe
H
, le gain en amplitude
(
)
G
ω
du
quadripôle, son gain en décibels
(
)
GdB
ω
et le déphasage
(
)
ϕ ω
qu'il introduit entre réponse
et excitation.
Pouvoir déduire d’une fonction de transfert complexe
H
, l’équation des asymptotes pour
les fonctions
(
)
log
GdB
ω
et
(
)
log
ϕ ω
, l’existence de points particuliers (ex : fréquence
donnant lieu à une résonance, fréquences de coupure) pour enfin tracer le diagramme de
Bode (
(
)
log
GdB
ω
,
(
)
log
ϕ ω
).
A partir d'une fonction de transfert
H
ou d'une représentation graphique (réponse
fréquentielle ou diagramme de Bode) savoir déterminer la fréquence de résonance, les
fréquences de coupure à
3
dB
, la bande passante correspondante et pour un filtre du second
ordre savoir en déduire le facteur de qualité du quadripôle.
Savoir utiliser la fonction de transfert
H
d'un quadripôle pour étudier les régimes
sinusoïdaux forcés, mais aussi pour étudier les régimes transitoires (réponse indicielle ou
régime libre).
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !