\/$1!63!0'3(-!A!
W= K3.+/-!.,0*1+23,-!)'3(!$1$/N-,(!/,-!0$(.,-!
WW= ]3$.(,!0/&-!6,!/,0.3(,!63!:'16,!
!
I. Outils$techniques$pour$analyser$les$cartes$
!
Q1,!0$(.,!1@,-.!5$:$+-!31,!(,)(&-,1.$.+'1!,8$0.,!,.!;+6?/,!6,!/$!(&$/+.&=!>3!0'1.($+(,9!'1!/$!
0'1-.(3+.!)'3(!-+:)/+;+,(!,.!:+,38!0':)(,16(,!0,..,!(&$/+.&=!J3!0'3)9!.'3.,!0$(.,!(,;/?.,!/$!
C+-+'1!63!:'16,!6,!-'1!0(&$.,3(!O!.($C,(-!/,-!0*'+8!6,!(,)(&-,1.$.+'1-!23@+/!;$+.Y!L//,!1@,-.!
6'10!jamais$ neutre=!#,-!0*'+8!6,!(,)(&-,1.$.+'1!),3C,1.!^.(,!-+:)/,:,1.!pratiques9!:$+-!
+/-!),3C,1.!$3--+!C&*+03/,(!6,-!:,--$%,-!politiques=!W/!;$3.!6'10!-$C'+(!0(+.+23,(!,.!$1$/N-,(!
/,-!0$(.,-![!
!
_'+0+!31!0,(.$+1!1':4(,!6@'3.+/-!)'3(!$1$/N-,(!/,-!0$(.,-!A!
!
1) Le$choix$de$la$projection$
!
#$!<,((,!,-.!('16,=!J3!0'3)9!)'3(!/$!(,)(&-,1.,(!-3(!31,!-3(;$0,!)/$1,!D31,!0$(.,G9!'1!,-.!
'4/+%&-!6,!6&;'(:,(!,1!)$(.+,!/,-!6+-.$10,-!'3!/,-!;'(:,-!6,-!0'1.+1,1.-=!>+1-+9!31,!0$(.,!,-.!
31,!projection,$0@,-.EOE6+(,!31,!(,)(&-,1.$.+'1!O!)/$.!6@31,!)/$1?.,!('16,=!!
!
W/!,8+-.,!6+;;&(,1.-!modes$de$projection!6'1.!C'+0+!23,/23,-!,8,:)/,-$A!
• La$ projection$ de$ Mercator$A!0@,-.!/$!)('5,0.+'1!23,!1'3-!3.+/+-'1-!/,!)/3-=!L//,!&.+(,!
/,-!-3(;$0,-!63!%/'4,!-3(! /,-!diagonales=!J3!0'3)9!)/3-!/,-! -3(;$0,-!6,-!0'1.+1,1.-!
-@&/'+%1,1.!63!0,1.(,9!)/3-!,//,-!-'1.!6&;'(:&,-=!>+1-+9!/@>:&(+23,!63!H36!)$($`.!)/3-!
),.+.,!23,!/,!I(',1/$16!$/'(-!23@,//,!,-.!a8!)/3-!%($16,=!#@>;(+23,!$!/@$+(!.'3.,!),.+.,!
$/'(-!23@,//,!,-.!)/3-!%($16,!23,!/@W16,9!/$!U*+1,9!/,-!L.$.-EQ1+-9!/@L3('),!,.!/,!S$)'1!
(&31+-Y!L1!0'1-&23,10,9!0,..,!)('5,0.+'1!6'11,!/@+:)(,--+'1!23,!/,-!pays$ du$ Sud!
-'1.!plus$petits!23,!/,-!)$N-!63!P'(69!0'::,!-@+/-!$C$+,1.!:'+1-!6@+:)'(.$10,Y!
• La$projection$de$Peters$A!K1!)('5,..,!/$!:$)),:'16,!-3(!31!0N/+16(,!23+!/@,1%/'4,!
)3+-!'1!6&('3/,!/,!0N/+16(,=!U,..,!)('5,0.+'1!),(:,.!6,!)(,16(,!,1!0':).,!/$!taille$
réelle!6,-! 0'1.+1,1.-9! :$+-! /,-! 0'1.'3(-! 6,-! 0'1.+1,1.-! -'1.! 6&;'(:&-=! L//,! ,-.!
0'1-+6&(&,! 0'::,! :'+1-! b!)'/+.+23,:,1.! +10'((,0.,!c! 23,! /$! )('5,0.+'1! 6,!
B,(0$.'(!0$(!,//,!(,6'11,!/,3(!importance$$38$pays$du$Sud=!!
• La$projection$de$BuckminsterJFuller$A!U,..,!)('5,0.+'1!,-.!0,1.(&,!-3(!/,!)R/,!P'(6=!
J3!0'3)9!/,-!0'1.+1,1.-!'1.!/$!4'11,!.$+//,!:$+-!+/-!-'1.!4,$30'3)!.(')!&/'+%1&-!/,-!
31-! 6,-! $3.(,-9! /,-! distances!1,! -'1.! )$-! (,-),0.&,-=! \$(! $+//,3(-9! ,//,! 6'11,! )/3-!
6@+:)'(.$10,!$3!P'(6=!
• La$ projection$ azimutale$ équidistane$A!L//,!,-.!$3--+!0,1.(&,!-3(!/,!\R/,!P'(69!:$+-!
,//,!),(:,.!),(:,.!6,!(,)(&-,1.,(!/,-!6+-.$10,-!,.!0'1.'3(-!6,-!)$N-!63!P'(6!6,!
:$1+?(,! ,;;+0$0,=! \$(! 0'1.(,9! ,//,! 6&;'(:,! 0':)/?.,:,1.! /,-!)$N-! 63! H369! 23+! 63!
0'3)!-'1.!(,)(&-,1.&-!0'::,!:'+1-!+:)'(.$1.-=!!!
!
#,!0*'+8!6@3.+/+-,(!.,//,!'3!.,//,!)('5,0.+'1!1@,-.!6'10!pas$neutre$A!/$!)/3)$(.!6,-!)('5,0.+'1-!
3.+/+-&,-! 6'11,1.! 4,$30'3)! )/3-! 6@+:)'(.$10,! $3! P'(6! 23@$3! H36Y! #$! )('5,0.+'1! 6,!
B,(0$.'(9!23+!,-.!/$!)/3-!0'113,9!:,.!/@L3('),!$3!0,1.(,!,.!%('--+.!/$!.$+//,!6,!0,!0'1.+1,1.=!
U,/$!,-.!O!(,:,..(,!6$1-!/,!0'1.,8.,!6,!/$!0'/'1+-$.+'1=!\,16$1.!6,-!-+?0/,-9!/@L3('),!$!&.&!
)'/+.+23,:,1.!,.!&0'1':+23,:,1.!)/3-!)3+--$1.,9!$/'(-!,//,!$!6+;;3-&!31,!0$(.,!63!:'16,!
23+!/$!(,)(&-,1.,!0'::,!)/3-!%('--,9!-$1-!;'16,:,1.!%&'%($)*+23,=!
!