PROBABILITÉ
I. Notion de loi de probabili
1. Qu’est-ce qu’une expérience aléatoire ?
Une expérience aléatoire est une expérience dont on ne peut ni prévoir, ni
calculer le résultat.
Il est cependant essentiel dans une expérience aléatoire d’être en mesure de
déterminer l’ensemble
de tous les issues possibles.
= {x
1
; ... ; x
n
}
Par exemple, si l’on lance un dé à six faces, on prend généralement comme
résultats possibles 1, 2, 3, 4, 5, 6. On a donc
= {1, 2, 3, 4, 5, 6}.
2. Loi de probabili
Définir une loi de probabilité P sur l’ensemble
, c’est associer à chaque
résultat x
i
un nombre positif p
i
tel que la somme des p
i
soit égale à 1.
On a donc :
avec, pour tout entier i compris entre 1 et n,
0 1
i
p
አ አ
et
1
1.
n
i
i
p
=
=
p
i
mesure la probabilité que le résultat x
i
se réalise : plus p
i
est proche de 1, plus x
i
a de chances de se réaliser ; à l’inverse plus p
i
est proche de 0, moins x
i
a de
chances de se réaliser.
3. Estimer une probabilité
On peut faire une simulation statistique (par exemple, le jet d’une pièce de
monnaie).
Loi équirépartie
Si tous les résultats x
i
de l’ensemble
ont la même probabilité, alors la loi est
dite équirépartie.
Si E possède n éléments, chaque élément x
i
a une probabilité p
i
= 1/n.
C’est en général la situation que l’on choisit quand on lance une pièce équilibrée,
un dé non pipé, quand on tire une carte au hasard d’un jeu bien battu etc. On parle
aussi de situation d’équiprobabilité.
Pour un dé non pipé, on prendra alors la loi de probabilité suivante :
x
i
1 2 3 4 5 6
p
i
1
6
1
6
1
6
1
6
1
6
1
6
Issue
x
2
x
n
x
Probabili
1
p
2
p
n
p
II. Événements et probabilité
1. Qu’est-ce qu’un événement ?
Un événement A est une partie, ou un sous-ensemble, de l’ensemble
de tous
les résultats possibles d’une expérience aléatoire.
Par exemple, si on lance un dé, l’événement A = « obtenir un numéro pair »
correspond à la partie A = {2 ; 4 ; 6} de
.
L’événement impossible correspond au sous-ensemble de
.
L’événement certain correspond au sous-ensemble
de
.
2. Probabilité d’un événement
Cas d’une loi quelconque
La probabilid’un événement A est par définition la somme des probabilités
des résultats qui constituent A.
p(A) est toujours compris entre 0 et 1.
Il est clair que p() = 0 et que p(
) = 1.
Cas d’une loi équirépartie
La probabilité d’un événement A est le quotient :
( )
nombre d'éléments de
nombre d'éléments de
A
p A =
(on dit aussi que la probabilité de A est le quotient des cas favorables à A sur les
cas possibles).
En reprenant l’exemple du dé, supposé non pipé, calculons la probabilité de
l’événement B = « tirer un numéro multiple de 3 ».
Comme B = {3, 6}, p(B) = 2
6 = 1
3.
3. Propriétés des probabilités d’événements
Si A et B sont deux événements.
Événement contraire
A
, événement contraire de A, est l’ensemble des issues qui ne réalisent pas A.
Intersection de deux événements
A B
est l’ensemble des issues qui réalisent A et B (les deux à la fois).
Réunion de deux événements
A B est l’ensemble des issues qui réalisent A ou B (au moins l’un des deux).
A
A
Exemples : Au lancer d’un dé cubique :
A : « Obtenir un résultat supérieur à 4 » et B : « Obtenir un résultat pair »
A
:
A B
:
A B :
Propriétés : Soit A et B deux événements.
(
)
(
)
1
p A p A
= − .
(
)
(
)
(
)
(
)
p A B p A p B p A B
∪ = +
.
Cas particulier : si A et B sont des événements disjoints (A B = ), on a
(
)
(
)
(
)
.
p A B p A p B
∪ = +
On dit que les événements sont incompatibles.
Exercice 1 : On tire au hasard une carte dans un jeu de 32 cartes et on note la
carte obtenue.
1. Calculer les probabilités des événements A : « la carte est un valet », B : « la
carte est un pique ».
2. Décrire par des phrases les événements
B
,
A B
,
A B
et déterminer leurs
probabilités.
Exercice 2 : Pour 500 personnes amenés à respirer des poussières pendant leur
activité profesionnelle, on a les données présentées dans le tableau ci-dessous.
Atteints de toux chronique
Non atteints de toux chronique Total
Fumeurs 60 140 200
Non fumeurs 40 260 300
Total 100 400 500
On prélève au hasard le dossier d’une personne parmi les 500.
On note A l’événement « Le dossier est celui d’une personne attiente de toux
chronique » et F « Le dossier est celui d’un fumeur ».
1. Calculer
(
)
p A
,
(
)
p F
,
(
)
p A
,
(
)
p F
,
(
)
p A F
et
(
)
p A F
.
2. Parmi les fumeurs, quelle est la probabilité d’obtenir un dossier d’une personne
atteint de toux chronique.
III. Calcul avec un arbre
On utilise souvent un arbre de probabilité afin de déterminer l’ensemble des
issues d’une expérience aléatoire qui admet deux (ou plus) actions successives.
Exemples : Lancer successive d’une pièce de monnaie, d’un dé, tirage successive
d’une boule dans une urne …
Règles :
La somme des probabilités issues d’un même nœud est égale à 1 ;
La probablité d’une issue correspond au produit des probabilités se trouvant sur
les branches.
Pour déterminer la probabilité d’un événement se trouvant sur une feuille de
l’arbre , on ajoute les probabilités des « chemins » menant à cet événement.
Application : On dispose d’une urne
U
contenant trois boules rouges et deux
boules vertes et d’une urne
2
U
contenant quatre boules rouges et une boule verte.
Tom lance un dé supposé bien équilibré.
S’il obtient « 1 ou 6 », il extrait au hasard une boule de l’urne
U
.
Sinon, il extrait au hasard une boule de l’urne
2
U
.
On nomme : A l’événement « obtenir 1 ou 6 avec le dé »,
R l’événement « obtenir une boule rouge »,
V l’événement « obtenir une boule verte ».
1. a) Calculer la probabilité de l’événement A. En déduire
(
)
A
p.
b) Tom tire au hasard une boule de l’urne
U
: quelle est la probabilité qu’elle
soit rouge ? verte ?
c) Reprendre la question précédente dans le cas où le tirage s’effectue dans
2
U
.
2. a) Illustrer la situation par un arbre et y reportant les probabilités connues.
b) Utiliser les règles de calcul dans un arbre pour calculer les probabilités des
événements suivants :
E : « la boule provient de
U
et elle est rouge » ;
F : « La boule provient de
2
U
et elle est rouge ».
3. Quelle est la probabilité qu’à ce jeu, Tom obtienne une boule rouge ? une boule
verte ?
III. Variable aléatoire
1. Définition
Soit
l’univers associé à une expérience aléatoire.
On appelle variable aléatoire toute application X de
dans
. X(
) est alors
l’image de
.
Exemples :
On jette un cubique et on s’intéresse au jeu suivant : si on obtient un numéro
inférieur ou égal à 4 on perd 1 €, sinon on gagne 2 €.
L’application X qui à tout tirage associe le gain obtenu (une perte est un gain
négatif) est une variable aléatoire (discrète prenant un nombre fini de valeurs).
On a
{
}
1;2;3;4;5;6
Ω =
,
(
)
{
}
1;2
X
Ω =
.
2. Loi de probabilité
La loi de probabilité de la variable aléatoire X est la fonction :
(
)
[
]
( )
( )
: 0;1
i i
L X
x L x P X x
Ω →
= =
֏
.
Exemple :
Le tableau suivant nous donne la loi de probabilité de X :
Exemple de calcul :
( ) { }
( )
{ }
( )
1 1 1
2 5 6
6 6 3
P X P P
= = + = + =
.
3. Espérance,variance et écart-type
L’espérance de la loi de probabilité est le nombre :
(
)
1 1 2 2
... .
n n
E X p x p x p x
= × + × + + ×
La variance de la loi de probabilité est le nombre :
( ) ( ) ( ) ( )
2 2 2
1 1 2 2
... .
n n
V X p x E X p x E X p x E X= + + +
 
 
L’écart-type est la racine carrée de la variance :
(
)
(
)
.
X V X
σ
=
Autre formule de la variance :
La variance est la moyenne des carrés moins le carré de la moyenne :
( )
( )
( )
2
2
1
.
n
i i
i
V X x p E X
=
= × −
 
 
i
x
1
2
(
)
i
P X x
=
2
3
1
3
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !