Fiche professeur Mécanique – Terminale S
© Texas Instruments 2007 / Photocopie autorisée
M1n - 1
M1n - LANCER PARABOLIQUE
Auteur : Jean-Louis Balas TI-Nspire CAS
Mots-clés : Mouvement, trajectoire, énergie, portée, flèche, tir, amortissement visqueux.
Fichiers associés : M1nElev_TirParabol_CAS.tns, M1nProf_TirParabol_CAS.tns
Ces fichiers sont spécialement conçus pour une utilisation sur ordinateur.
1. Objectifs
Déterminer à partir des équations paramétriques d’un mouvement parabolique, son équation dans le plan x0z.
Utiliser l’outil de calcul formel de TI-Nspire CAS, pour trouver la flèche et la portée horizontale.
Calculer l’énergie potentielle et cinétique du mobile en un point donné de la trajectoire.
Familiariser l’élève aux possibilités offertes par TI-Nspire CAS.
2. Commentaires
On lance une boule de pétanque de masse 250 g à une hauteur h0 par rapport à une origine O et à une vitesse
initiale 0
v
uur
faisant un angle
α
par rapport à l’horizontale, avec 02
π
α
≤≤ . Le tir a lieu dans un repère
galiléen dans le plan xOz et dans le sens des x positifs. On rappelle les équations paramétriques du
mouvement. La seule force à laquelle soit soumis le corps est la gravité g.
3. Conduite de l’activité
Pour obtenir à l’écran la même présentation que sur
la calculatrice de l’élève (voir ci-contre), cliquer sur
Affichage/Vue Unité TI-Nspire CAS.
L’élève observe une simulation du phénomène de
façon à bien assimiler l’influence de h0, v0 et
α
sur
la forme de la trajectoire du mouvement.
Unités utilisées :
- La distance en mètre (m).
- L’énergie en Joule (J).
- La masse en Kilogramme (Kg).
On propose alors à l’élève d’utiliser la calculatrice pour :
Déterminer l’équation cartésienne ()yfx=du mouvement et la représenter graphiquement ;
Utiliser les fonctions de calcul formel de l’unité nomade pour déterminer l’expression de la vitesse
de la boule de pétanque, les expressions maximales de la flèche et de la portée horizontale pour une
inclinaison et une vitesse initiale données.
Fiche professeur Mécanique – Terminale S
© Texas Instruments 2007 / Photocopie autorisée
M1n - 2
4. Compléments
On pourra :
Représenter en fonction du temps l’énergie cinétique, l’énergie potentielle et l’énergie totale.
5. Annexe
On lance une masse m avec une vitesse initiale v0 faisant un angle θ avec l’horizontale. Le mouvement peut
être décrit en tenant compte ou non les forces de frottement du à l’air.
a) Sans frottement
Si on projette l’équation fondamentale de la dynamique sur la verticale et l’horizontale, on a :
2
2
2
2
0
dx
mdt
dy
mmg
dt
=
=−
La double intégration de ces équations conduit, compte tenu des conditions initiales à :
2
0cos
10cos
2
x
vt
y
gt v t
α
α
=
=− +
La trajectoire du mobile est une parabole.
b) Avec frottements
On suppose que la masse est soumise à une force de frottement proportionnelle à la vitesse. Cette hypothèse
est valable pour des vitesses inférieures à 60 km/h. Pour des vitesses supérieures, il est préférable de
considérer que le frottement est fonction du carré de la vitesse.
Si on projette l’équation fondamentale de la dynamique sur la verticale et l’horizontale, on a :
2
2
2
2
x
y
dx
mkv
dt
dy
mkvmg
dt
=−
=− −
La première équation peut s’écrire sous la forme :
kt
ym
yy
dv kk
vg vgCe
dt m m
=− +=
La première équation peut s’écrire sous la forme : 0cos
kt
m
x
vv e
α
La seconde équation peut s’écrire sous la forme :
kt
ym
yy
dv kk
vg vgCe
dt m m
=− +=
Les conditions initiales impliquent que : 0sin
kt
m
y
mm
vgve g
kk
α
⎛⎞
=+ −
⎜⎟
⎝⎠
Fiche professeur Mécanique – Terminale S
© Texas Instruments 2007 / Photocopie autorisée
M1n - 3
Une nouvelle intégration conduit à :
0
0
cos 1
sin 1
kt
m
kt
m
m
xv e
k
mm m
y
gv e gt
kk k
α
α
⎛⎞
=−
⎜⎟
⎝⎠
⎛⎞
⎛⎞
=+ −
⎜⎟
⎜⎟
⎝⎠
⎝⎠
Pour les petites valeurs de k/m, il est possible de faire un développement limité de ces relations. On retrouve
alors les expressions du cas sans frottement.
On constate que pour t assez grand
x
vtend vers 0, et y
vvers mg
k
.
Le mobile atteint une vitesse limite et la chute est verticale selon la valeur asymptotique 0cos
m
xv
k
α
=.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !