•Rd
Rd
Rd•
x= (x1,···xd)∈Rdp∈]1,+∞[
kxkp= d
X
i=1 |xi|p!1/p
,kxk∞= sup
1≤i≤d|xi|.
k·k1k·k2k·k∞Rd
kxk∞≤ kxk2≤ kxk1≤dkxk∞kxk2≤√dkxk∞,
x∈Rdd= 1
R2{x= (x1, x2)∈R2|kxk ≤ 1}
k·k1,k·k2k·k∞k·kpRdp∈]1,+∞[
s t ≥0st ≤sp
p+tq
qq1/q = 1−1/p
t s 7→ st −sp
p−tq
q
x y ∈Rd\{0}α=kxkpβ=kykqi
|xiyi|
αβ ≤|xi|p
pαp+|yi|q
qβq,
d
X
i=1
xiyi≤ kxkpkykq
|xi+yi|p≤ |xi+yi|p−1|xi|+|xi+yi|p−1|yi| k·kp
k·k2|·|
A={(x, y)∈R2|0<|x−1|<1};B={(x, y)∈R2|0< x ≤1};
C={(x, y)∈R2| |x|<1,|y| ≤ 1};D={(x, y)∈R2|x∈Q, y ∈Q};
E={(x, y)∈R2|x6∈ Q, y 6∈ Q};F={(x, y)∈R2|x2+y2<4}.
AR2
A={(x, y)∈R2|x2+y2≤2}\{(x, y)∈R2|(x−1)2+y2≤1}.
A