Rd
Rd
Rd
x= (x1,···xd)Rdp]1,+[
kxkp= d
X
i=1 |xi|p!1/p
,kxk= sup
1id|xi|.
k·k1k·k2k·kRd
kxk≤ kxk2≤ kxk1dkxkkxk2dkxk,
xRdd= 1
R2{x= (x1, x2)R2|kxk ≤ 1}
k·k1,k·k2k·kk·kpRdp]1,+[
s t 0st sp
p+tq
qq1/q = 11/p
t s 7→ st sp
ptq
q
x y Rd\{0}α=kxkpβ=kykqi
|xiyi|
αβ |xi|p
p+|yi|q
qβq,
d
X
i=1
xiyi≤ kxkpkykq
|xi+yi|p≤ |xi+yi|p1|xi|+|xi+yi|p1|yi| k·kp
k·k2|·|
A={(x, y)R2|0<|x1|<1};B={(x, y)R2|0< x 1};
C={(x, y)R2| |x|<1,|y| ≤ 1};D={(x, y)R2|xQ, y Q};
E={(x, y)R2|x6∈ Q, y 6∈ Q};F={(x, y)R2|x2+y2<4}.
AR2
A={(x, y)R2|x2+y22}\{(x, y)R2|(x1)2+y21}.
A
Rd
Rd
A={(x, y)R2|x2+y2<1}\{(x, y)R2|x= 0,|y| ≤ 1},Z,Q.
C1C2RdC1C26=
C1C2
CRda, b C
γ: [0,1] 7→ Rdγ([0,1]) C γ(0) = a γ(1) = b
C=C=C C
k·k RdK=B0(0,1)
K
• •
f1: (x, y)7→ r2x+ 3
y2;f2: (x, y)7→ ln(x+y+ 1) ; f3: (x, y)7→ ln(1 + x)ln(1 + y)
x2y2;
f4: (x, y)7→ x
y
y
x;f5: (x, y)7→ 1
cos(xy);f6: (x, y, z)7→ tan(px2+y2+z2).
R2
A={(x, y)R2|x2sin(y)4}
B={(x, y)R2|x34ey>4}
C={(x, y)[0,1]2|cos(x)0}
K1K2RdxK1yK2
d(K1, K2) = d(x, y)d
f:RdRpf
f:RdR
M > 0R > 0|x|> R =⇒ |f(x)|> M
BRf1(B)Rd
KRf1(K)Rd
f f(x)+
|x| → +f
Rdd2k · k T
T∈ L(Rd)
RdRx7→ kT(x)kRd
S:= {xRd| kxk= 1}Rd
|||T||| := max
kxk=1 kT(x)k
a∈ S kT(a)k=|||T|||
yRd\{0} kT(y)k ≤ |||T|||kykT
sup
y6=0
kT(y)k
kyk≤ |||T||| a∈ S
lim
(x,y)(0,0)
x2y
x+y; lim
(x,y,z)(0,0,0)
xyz +z3
2x3+yz2; lim
(x,y)(0,0) |x|+|y|
x2+y2;
lim
(x,y)(0,0)
x4y
x2y2; lim
(x,y,z)(0,0,0)
xy +yz
x2+ 2y2+ 3z2; lim
(x,y,z)(0,0,0)
xyz
x+y+z.
f:R2\ {(0,0)} → Rf(x, y) = x2y2
x2y2+ (xy)2
lim
x0lim
y0f(x, y) = lim
y0lim
x0f(x, y) = 0
lim
(x,y)(0,0) f(x, y)
R2
f1(x, y) = xy
x2+y2(x, y)6= (0,0) f1(0,0) = 0
f2(x, y) = x3+y3
x2+y2(x, y)6= (0,0) f2(0,0) = 0
(0,0)
(0,0) g:R2\{(0,0)} → Rg(x, y) =
xy ln(x2+y2)
fR2\ {(x, x)|xR}
f(x, y) = sin xsin y
xy.
fR2
f1
f2
URdaU
f:URa
d= 2
f:URa f a
g:URpa
g a g a
f1f2(0,0)
Γ = {(x, y)R2|x6+ 3x2y2+y4= 64}
ΓR2
Γ (2,0)
Γ
URdaU v Rdf:UR
a v
lim
t0, t6=0
f(a+tv)f(a)
t.
f a v f0
v(a)
f a v
φ:RRφ(t) = f(a+tv)φ
f
f:R27→ Rf(x, y) = y2/x x 6= 0 f(0, y) = y y R
f(0,0) vRdf0
v(0,0) f
f a v = (v1, . . . , vd)
f0
v(a) =
d
X
i=1
f
xi
(a)vi=f(a)·v.
S(0,1) = {vRd| |v|= 1}Rd
M= sup
v∈S(0,1)
f0
v(a).
M v
z= max(x2y2+
1800,0) A(20,20,1000)
f:R2RC1s > 0
λ > 0,xR2, f (λx) = λsf(x).
f s 1xR2
sf(x) = x1
f
x1
(x) + x2
f
x2
(x).
hR2R R2
1h ∂2h
f(x, y) = h(xy, x +y), g(x, y) = h(x2+y2, xy).
fR2R R21
g(r, θ) = f(rcos θ, r sin θ)g
r
g
θ f
f:R3R R3f /∂z = 0
f
URdaU f :UR
C1a a C1a
a
h:R3R3h(x, y, z) = (e2y+e2z, e2x+e2z, x y)
h C1R3U
Ω = R2\ {(0,0)}f:R2R
f(x, y) =
xy x2y2
x2+y2(x, y)
0 (x, y) = (0,0).
f
f(0,0)
f2f
x∂y
2f
yx
(0,0)
(0,0)
IRa v Rd
f:IR
a, b, c I a < b < c
f(b)f(a)
baf(c)f(a)
caf(c)f(b)
cb.
x0I
x7→ f(x)f(x0)
xx0
I\{x0}
f x0˚
I f
˚
I
f:RdRd2
f a v
f(0) = 0 uRdkuk1= 1
f(u)
d
X
i=1
uif(ei).
fk·k1
φ: [1,1] Rφ(λ) = f(λu)φ
M > 0uRdkuk1= 1
λM f(λu)Mλ λ[1,1].
fRd
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !