Démonstrations géométriques
La géométrie est la partie des mathématiques qui étudie
les propriétés
des
figures et
leurs relations
.
Pour démontrer ces propriétés, elle fait appel à différents énoncés:
Exemples:
- des axiomes;
- des conjectures;
- des théorèmes.
Les axiomes sont des énoncés considérés comme évidents et acceptés
comme vrais.
- le segment de droite représente le plus court chemin entre
deux points;
-par deux points ne passe qu’une seule droite.
Il est possible de percevoir des propriétés ou des relations qui ne sont pas du
tout évidentes et qui peuvent même se révéler fausses.
De tels énoncés sont appelés « conjectures ».
Exemple: Jusqu’au XVIIesiècle, on croyait que la Terre était le centre de
l’Univers, comme l’avait proposé Aristote.
C’était une conjecture qui avait été longtemps acceptée comme
vrai jusqu’au jour où Copernic et Kepler remettent en cause cette
conception de l’Univers.
Les conjectures peuvent servir de pistes de travail pour chercher ou
démontrer certaines réalités.
Cependant, pour n’induire personne en erreur, on se donne l’obligation de
démontrer leur véracité ou leur fausseté.
Pour être vraie, une conjecture doit s’appliquer à tous les cas.
Par contre, pour montrer qu’une conjecture est fausse, il suffit de trouver un cas
qui la contredit.
Ce cas est appelé un contre-exemple.
Exemple:
On pourrait émettre la conjecture suivante:
«Si c’est un œuf, alors il a été pondu par un oiseau. »
Cependant, les tortues pondent des œufs et elle ne sont pas des oiseaux.
Ce contre-exemple rend la conjecture fausse.
Lorsqu’une conjecture est démontrée, elle devient un théorème.
On démontre en établissant une preuve.
Voici quelques théorèmes :
La somme des mesures des angles intérieurs d’un triangle = 1800.
Une bissectrice est une droite divisant un angle en deux angles
isométriques ( congrus ).
Dans un triangle rectangle possédant un angle de 300, la mesure du côté qui
fait face à l’angle de 300vaut la moitié de la mesure de l’hypoténuse.
Des angles adjacents dont les côtés extérieurs sont en ligne droite sont
supplémentaires ( la somme de leurs mesures = 1800 ).
Nous allons les utiliser pour démontrer quelques situations.
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !