Spé ψ 2000-2001 page 1/6 Devoir n°8
Spé ψ 2000-2001 Devoir n°8
OPTIQUE
PROBLÈME A
MODULATION ET DEMODULATION SPATIALES EN OPTIQUE
En électronique, la modulation temporelle d'un signal et sa démodulation sont des
techniques importantes et connues dans le domaine de la transmission des informations par
voie hertzienne.
Ces techniques peuvent être transposées aux variations spatiales d'un signal, en opti-
que. A-1. Interférence de deux ondes monochromatiques, planes
On réalise, dans l'air, l'interférence de deux ondes monochromatiques, planes, cohé-
rentes, de même amplitude Ao et de même
phase nulle en O (Figure A1) ; la première, de
direction Oz , tombe normalement sur un écran
d'observation Oxy et la seconde fait l'angle
θo = 3° avec la direction de la première. La
longueur d'onde commune est λ = 632,8 nm.
a) Écrire les expressions des amplitudes
complexes ψ1 et ψ2 des deux ondes en un point
P du plan Oxy.
b) En déduire la répartition de l'éclai-
rement dans ce plan, la géométrie des franges
d'interférence et la valeur de l'interfrange en
fonction de λ et de θ0. Calculer l'interfrange en microns.
c) Sous quel angle, en minute d'arc, un observateur voit-il une distance égale à l'inter-
frange, lorsqu'il est placé à une distance de 25 cm du plan Oxy ? Commenter.
A-2. Réseau sinusoïdal d’amplitude
a) La répartition de l'éclairement I(P) dans le plan Oxy, calculé à la question A.1.b,
peut se mettre sous la forme :
I x
I
u x( )
(
)
cos= +
0
2
1 2 0
π
b
g
c
h
Il est possible d'obtenir, à partir de cet éclairement, une plaque photographique de
transmittance: t x u x
( ) cos
=
+
1 2
2
0
π
b
g
pour ≤ ≤
l
l
2
2
x avec l = 2 mm. On réalise ainsi un
réseau sinusoïdal par transmission. Trouver u0 en fonction de λ et θo. Comparer les valeurs de
u0 et de u1 = 1/l en unité SI.
Spé ψ 2000-2001 page 2/6 Devoir n°8
b) On appelle spectre spatial de t(x) , noté
$
( )t u et lu «t chapeau de u», la quantité sui-
vante: $( ) ( )expt u t x i ux dx= −
−∞
+∞
z
2π
b
g
.
Montrer que
$
( )t u se met sous la forme suivante:
$
( )
$
( )
$
( )
$
( )t u t u t u u t u u= + − + +
α α α
0 1 0 1 0
$( ) sin
t u u
u
l
l
l
=
π
π
b
g
et αo, α1, α—1, trois coefficients à déterminer en fonction de l.
c) On éclaire le réseau sous incidence normale, avec une onde monochromatique
plane, et on étudie la diffraction à l'infini dans la direction faisant un angle θ faible avec l'axe
Oz. Représenter graphiquement la répartition de l'éclairement en fonction de u =
θ
λ
. Comparer
la figure de diffraction donnée par ce réseau à celle produite par un réseau de fentes infiniment
fines. A-3. Fonction de transfert d'une lentille en éclairage cohérent
Dans le montage optique de la figure A.2, on forme l'image d'un objet transparent, uni-
dimensionnel (selon Ox), à l'aide d'une lentille mince convergente L, de distance focale image
f = 20 cm. Cette lentille est limitée, suivant une direction parallèle à l'axe des x, par une fente
rectangulaire, de largeur D, centrée sur l'axe optique Oz. L'éclairage est cohérent: l'onde qui
éclaire l'objet a une longueur d'onde déterminée λ= 632,8 nm et son vecteur d'onde une va-
leur et une direction fixées; dans ce montage, cette direction est normale au plan de l'objet, car
l'onde incidente est issue d'une source ponctuelle S, placée au foyer principal objet d'une len-
tille collimatrice LC, mince, convergente, de distance focale image fC = 10 cm.
Dans tout la suite, on suppose satisfaite l'approximation de Gauss de l'optique géomé-
trique.
L'objet est le réseau sinusoïdal précédent, de largeur totale l et de transmittance t(x).
a) Trouver la position de l'image géométrique donnée par L, lorsque l'objet est situé en
avant de L, à une distance d0 = 25 cm et calculer le grandissement transversal. Construire. à
l'échelle 1/10 sur l'axe d'optique, l'image géométrique de l'objet. se trouve l'image géomé-
trique de la source S donnée par l'ensemble des deux lentilles LC et L ?
Spé ψ 2000-2001 page 3/6 Devoir n°8
b) L'onde incidente est diffractée à l'infini par le réseau dans la direction faisant un an-
gle θ faible avec l'axe Oz. Montrer que la répartition de l'amplitude complexe de cette onde
diffractée, dans le plan focal image de L, est donnée par
$
( )t u avec u =
θ
λ
.
c) Lorsque la largeur D est inférieure à une certaine valeur à déterminer, on n'observe
pas dans le plan image la structure périodique du réseau sinusoïdal. Donner une interprétation.
En déduire que la lentille diaphragmée se comporte comme un filtre passe-bas dont on donne-
ra la fonction de transfert T(u). Calculer en m—1 la fréquence spatiale de coupure uC dans le
cas où D = 10 cm.
d) Décrire l'aspect du plan focal si uC > 1,5 u0 (couleur, position des pics d'intensité).
A-4. Modulation et démodulation spatiales en amplitude
Dans le montage précédent (Figure A.2), on accole au réseau précédent un objet trans-
parent dont la transmittance est m(x) , x étant la variable spatiale le long de l'axe Ox.
a) Montrer qu'on réalise ainsi simplement un « multiplieur optique » .
b) On constate, dans le plan focal, que les pics d'intensité s'élargissent. Ainsi, le pic
central s'étend jusqu'à une distance égale à b = 2mm de l'axe optique. Justifier cet élargisse-
ment en s'aidant de l'étude qualitative des réseaux de fentes. Calculer la valeur de la fréquence
spatiale um correspondante en m—l. Montrer que l'on réalise ainsi un «multiplexage spatial» de
l'information contenue dans l'objet, c'est-à-dire une reproduction multiple de cette informa-
tion, autour de « fréquences spatiales porteuses » déterminées.
Quelles sont les valeurs de ces dernières en m—1 ?
c) On souhaite démoduler le signal optique afin de restituer l'objet initial. Proposer une
méthode optique simple de «démodulation spatiale».
PROBLÈME B
SPECTROMÉTRIE INTERFÉRENTIELLE DE MICHELSON
PARTIE I
INTERFEROMETRE DE MICHELSON
B-I-1) Identification et rôle des éléments
On donne ci-dessous le schéma d'un interféromètre. les faces en trait gras sont traitées
par un dépôt métallique.
Spé ψ 2000-2001 page 4/6 Devoir n°8
a) Nommer et préciser en une ligne environ le rôle et les possibilités de glage (rota-
tion, translation) de chaque élément repéré par la lettre A, B, C ou D.
b) Pour un rayon incident, tracer le(s) trajet(s) suivi(s) par la lumière en précisant le
sens de parcours. La tolérance sur la différence de largeur des lames A et B est-elle de l'ordre
du millimètre, du micromètre, du manomètre ou du picomètre ? Justifier.
c) En l'absence d'une de ces lames, pourrait-on observer:
Ÿ les anneaux à l'infini en lumière monochromatique ?
Ÿ les franges rectilignes en lumière monochromatique ?
Ÿ les franges rectilignes en lumière blanche ?
d) Quel intérêt y a-t-il à faire interférer des ondes d'égale intensité ? Justifier en expri-
mant un coefficient caractérisant la visibilité de la figure d'interférence en fonction du rapport
des intensités des deux ondes. La face traitée de la lame B présente un coefficient de réflexion
en énergie noté R. Préciser le coefficient de transmission en énergie si on glige l'absorption
de la lame. Les ondes qui interfèrent en sortie de l'interféromètre ont-elles même amplitude
quel que soit R ?
e) Quelle valeur donne-t-on à R et pourquoi ?
On négligera dans la suite toute différence de marche due aux réflexions sur les lames
et les miroirs, en faisant l'hypothèse qu'elles se compensent : seules les différences de trajet
dans l'air seront comptées.
B-I-2) Réglage géométrique
On désire dans un premier temps gler approximativement la position des miroirs en
vue d'obtenir des franges d'interférence. Pour ce faire, on désire réaliser un collimateur à l'aide
des éléments suivants: lampe, diaphragme et lentille mince.
a) Indiquer sur un schéma les positions respectives de ces éléments.
b) Quelle condition sur ces positions permet d'obtenir un faisceau de lumière parallèle
?c) On place également un condenseur (lentille de courte distance focale) dans le dispo-
sitif précédent, préciser son rôle et sa position par rapport aux autres éléments.
Spé ψ 2000-2001 page 5/6 Devoir n°8
d) On place ce dispositif en entrée de l'interféromètre, indiquer par quel(s) glage(s)
(rotation ou translation) et sur que](s) élément(s) on peut agir pour obtenir la superposition
des faisceaux en sortie de l'interféromètre.
B-I-3) Anneaux
On raisonne sur l'interféromètre g de telle sorte que l'on observe, avec une source
étendue, des anneaux. La lumière utilisée est monochromatique de longueur d'onde
λ = 589 nm.
a) Préciser la position relative des miroirs.
b) On veut observer ces franges sur un écran placé à 1,5 mètre des miroirs à l'aide
d'une lentille placée à la sortie de l'interféromètre.
Ÿ Comment doit-on positionner l'écran par rapport à la lentille ?
Ÿ On dispose de lentilles de distance focale 10 cm, 50 cm et 1 m. Laquelle per-
mettra d'obtenir les anneaux projetés de plus grande taille ?
Partant du glage pour lequel la figure observée est uniforme de même cou-
leur que la source (teinte plate), on translate l'un des miroirs de 1 mm. Calculer le rayon sur
l'écran des 5 premiers anneaux. PARTIE II
APPLICATION
On reprend ici l'étude spectrale de sources lumineuses, telle qu'elle a été initialement
menée par Michelson en 1891, en spectrométrie interférentielle.
On utilise une source ponctuelle S qui envoie un pinceau lumineux dans le voisinage
du centre I de la séparatrice; l'un des miroirs M1 est fixe, alors que le second M2 est mobile
selon une direction Ox normale à son plan. Le centre I2 de M2, S et I sont alignés. Un détecteur
est placé en un point P de l’axe I1I, de telle sorte que sa faible surface de détection soit nor-
male à la direction I1I , laquelle est définie par I et le centre I1 de M1. Il enregistre l'intensité de
l'onde résultant de l' interférence des faisceaux réfléchis par M1 et M2. On désigne par x le-
placement du miroir M2 compté à partir de la distance minimale de II2 égale à II1.
B-II-1) La source est une lampe à vapeur de mercure qui émet deux radiations, de fré-
quences respectives ν ν
1 0 1 2
2
= −
∆ν
/et ν ν
2 0 1 2
2
= +
∆ν
/, et dont les contributions en intensité
dans le plan d'observation sont égales à Iν,1 = Iν,2. La longueur d'onde correspondant à νo est
λo = 578 nm .
a) Calculer νo. Quelle est la couleur de cette radiation ?
b) Montrer que l' intensité détectée peut se mettre sous la forme
I
I
t
( )
(
)
( )cosτ γ τ πν τ= +
0
2
1 2 0
b
g
,
τ est une durée que l’on exprimera en fonction de x et de la vitesse c de la lumière
dans le vide et γt (τ) une fonction que l'on déterminera.
c) En déduire le facteur de visibilité des franges d'interférence, c'est-à-dire la quantité
V
I I
I I
M m
M m
=
+
b
g
b g, IM étant l'intensité maximale et Im l'intensité minimale pour un domaine de
variation réduit de τ. Tracer l'allure des graphes |γt(τ)| et I(τ).
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !