TD 16 Interférences lumineuses MP*
!1. Détermination de l'indice d'un gaz
Une fente source S émet une onde monochromatique de longueur d'onde λ = 598 10-9 m. Les
deux cuves C1 et C2 contiennent initialement de l'air. Elles ont une longueur L=1,90 m. F1 et F2
sont deux fentes diffractantes, L1 et L2 sont deux lentilles convergentes et E un écran C
1) A quel domaine appartient l'onde émise ? Donner les bornes du domaine visible en longueur
d'onde et en fréquence.
2) Expliquer pourquoi le fait que F1 et F2 soient deux fentes diffractantes implique qu'on
observe des interférences sur l'écran. Pourquoi le centre de la figure d'interférences est-il en O?
Est-ce une raie sombre ou claire ?
3) On remplace progressivement l'air de la cuve 1 par du monoxyde de carbone d'indice n. En O,
on voit 143 raies se translater vers le haut. Déterminer qualitativement si n > nair ou si n<nair.
Calculer n.
!
!2.!!Vélocimètre
Un interféromètre est composé de 2 sources monochromatiques cohérentes A et B ( λ =630 nm)
placées dans le plan focal objet d’une lentille L de foyers F et F’. A et B sont symétriques par
rapport à F et on note AB = a =1 cm et f’ = OF’ = 50 cm. Chaque source émet un un faisceau de
largeur angulaire θ = 1° dans une direction moyenne parallèle à l’axe FOF’x du système.
1- Représenter le champ d’interférence. Quelle est la direction α des faisceaux émergeant de la
lentille par rapport à l’axe optique ? Estimer les dimensions suivant les axes x et y de la zone
d’interférence et indiquer l’orientation des franges.
2- Sachant que A et B sont en phase, montrer que le déphasage des 2 ondes est nul en F’.
Déterminer le déphasage ϕ(M) des 2 ondes en un point M de coordonnées x et y du champ
d’interférence. En déduire l’intensité lumineuse I(x,y) en précisant la valeur de l’interfrange i.
3- Un fluide est en écoulement à la vitesse v suivant l’axe F’y ; une particule diffusante y est
mélangée en vue de traverser la zone d’interférence. Sachant qu’elle réfléchit une portion de
l’intensité lumineuse I’ = kI, à quelle condition sur sa taille le signal reçu par le détecteur est-il
une réplique temporelle des franges spatiales ? Le signal observé a pour fréquence f = 950 Hz ;
en déduire la vitesse cherchée.
4- Pour augmenter l’intensité on répartit de manière aléatoire dans le fluide un nombre important
N de particules diffusantes. Que dire alors du signal détecté ?
!
!
!
!3. Interférences avec deux miroirs parallèles
On considère le montage représenté ci-dessous. M1 et M2 sont des miroirs plans distants de 2 . S
et S sont des sources ponctuelles monochromatiques, distantes de 2 a, de même longueur d’onde
λ et de même intensité. L’écran opaque E supprime la lumière directe.
Déterminer l’intensité lumineuse I(x) sur l’écran ainsi que le contraste des franges.
4. Observation d'une étoile double au travers de fentes d'Young
Les deux composantes d'une étoile double sont vues sous un angle α depuis la Terre. On pointe
un système de deux trous d'Young vers le milieu des deux étoiles, et on place un écran à la
distance D derrière les trous d'Young.
a- Déterminer les intensités lumineuses de chacune des étoiles seules puis, donner l'expression de
l'intensité totale sur l'écran.
b- En visant l'étoile double Capella de la constellation du Cocher, des astronomes ont obtenu une
première annulation de contraste pour a = 1,16 m, dans le visible (.i.= 635 nm). En déduire la
distance angulaire α.
c- Expliquer l'intérêt de la méthode par rapport à une observation directe sachant que la
turbulence atmosphérique limite la résolution environ à 1" (sans optique adaptative).
d-Fizeau et Stephan ont essayé par cette méthode de mesurer le diamètre angulaire des étoiles.
Sachant qu'ils ont disposé des trous d'Young sur un télescope de diamètre valant environ 1 m,
essayer d'expliquer pourquoi ils n'ont pas réussi.
!5. Michelson en lame d’air
Un interféromètre de Michelson est réglé en lame d’air. Il est éclairé par une lampe au mercure
devant laquelle on a placé un diaphragme largement ouvert et un filtre interférentiel isolant la raie
verte de longueur d’onde dans le vide λ0 = 546,1 nm.
1. Où doit-on placer l’écran pour observer des anneaux bien contrastés ?
2. La distance entre les miroirs est e = 1,1 mm et la lentille de projection a une distance focale
f=1,0 m.
Déterminer l’ordre d’interférence p0 au centre de la figure.
Calculer les rayons ρ1 et ρ2 des deux premiers anneaux brillants.
3. On diminue la valeur de e.
Comment les anneaux évoluent-ils sur l’écran ?
Calculer la valeur e de e pour laquelle le premier anneau disparaît. En déduire le rayon ρ′1 du
premier nouvel anneau et le comparer au rayon de l’anneau qui a disparu.
4. Cherchant à atteindre le contact optique, on!diminue!la!valeur!de!e!jusqu’à!voir!sur!l’écran!
une!tache!de!diamètre!égal!à!10!cm!dont!l’éclairement,!maximal!au!centre,!est!uniforme!à!
10%!près.!Quelle!est!alors!la!limite!supérieure!pour!la!valeur!de!e!?!
!
!
!
!
!6. Michelson en coin d'air
On s'intéresse à un Michelson réglé en coin d'air, l'angle entre les deux miroirs étant θ. On
observe les interférences créées par une lampe monochromatique large (de longueur d'onde λ)
grâce à une lentille convergente de focale f’ placée à une distance l1 des miroirs.
1- Comment éclairer les miroirs ?
2.a-Les interférences sont-elles localisées ? ?
2.b les observe-t-on grâce à la lentille (on donnera la distance l2 entre la lentille et le plan
d'observation)?
2.c- Quel est alors le grandissement γ du montage en fonction de f’ et l1 ?
3.a Quelle est la forme des franges d’interférences?
3.b- Que vaut l'interfrange sur l'écran d'observation i en fonction de λ, θ, f’ et l1 ?
3.c- Que se passe-t-il si les miroirs sont parallèles ?
!
!
!
!7. Spectrométrie par transformation de Fourier
Un interféromètre de Michelson est réglé en lame d’air et éclairé par une source ponctuelle S,
monochromatique de longueur d’onde dans le vide λ0, placée au foyer objet d’une lentille
convergente L1 d’axe optique (Ox). Un détecteur, placé au foyer image d’une seconde lentille
convergente L2
d’axe optique (Oy) délivre une tension U = k E E est l’éclairement qu’il reçoit et k une
constante.
Dans un premier temps, l’interféromètre est éclairé par un laser de longueur d’onde λ0 = 632,8
nm pouvant être considéré dans les conditions de l’expérience comme une source parfaitement
monochromatique.
1. On translate le miroir M1 à vitesse constante V le long de l’axe Oy.
Montrer que la tension u délivrée par le détecteur varie sinusoïdalement dans le temps.
Quelle doit être la vitesse V pour avoir une période T = 0,10 s ?
On éclaire maintenant l’interféromètre par une lampe à vapeur de mercure dont on isole la raie
verte, de longueur d’onde moyenne λ0m à l’aide d’un filtre interférentiel. Cette source n’est pas
monochromatique : la puissance qu’elle émet se répartit suivant les différentes radiations de
fréquences ν voisines de νm = c/λ0m. On définit la densité spectrale de puissante Pν(ν) par la
relation : dP(ν) = Pν(ν) dν dP(ν) est la puissance rayonnée par la source dans l’intervalle de
fréquence [ν,ν + dν].
D’autre part, lorsqu’une voie de l’interféromètre est occultée (pas d’interférences), l’éclairement
dE0(ν) reçu par le détecteur, dans la bande de fréquence [ν,ν + dν] s’écrit : dE0(ν) = K dP(ν) K
est une constante de proportionnalité indépendante de ν, dépendant de la géométrie et de la
transmission de l’interféromètre. On définit la densité spectrale d’éclairement E0ν (ν) par la
relation dE0(ν) = E0ν dν.
2. Montrer que E0ν(ν) est proportionnel à Pν(ν).
3. Lorsque les deux voies de l’interféromètre fonctionnent, montrer que l’éclairement du
détecteur
s’écrit :
avec τ = δ/c δ est la différence de marche au niveau du détecteur et c la vitesse de la lumière
dans le vide.
4. Nous supposons que la raie a un profil gaussien (cas d’une lampe basse pression,
l’élargissement
de raie étant principalement dû à l’effet Doppler provenant de l’agitation thermique) :
E0ν (ν) = A exp ((ν ν0)2 /a2) où a et A sont des constantes et a ν0.
Représenter ED (ν) en fonction de ν.
Donner l’expression de la largeur spectrale de la source Dν = ν1 ν2 ν1 et ν2 sont les
fréquences pour lesquelles E0ν =A/2.
5. Mettre l’éclairement sous la forme E = Em[1 + γ(τ ) cos(2 π ν0 τ )] et donner les expressions de
Em et de γ(τ ). On utilisera les formules suivantes :
et, compte tenu de la décroissance très rapide de la fonction E0ν lorsque ν s’écarte de νm, on
pourra étendre l’intégration à l’intervalle [−∞,].
6. On translate le miroir M1 à vitesse constante V le long de l’axe Ox ; à l’instant t = 0 la position
de ce miroir correspond au contact optique.
Quelle est la relation entre t et τ ?
Représenter l’allure de la tension u(t) délivrée par le détecteur.
!8. Bulle de savon
On s'intéresse à une bulle de savon qui flotte dans l'air, qu'on assimilera à une pellicule d'eau
savonneuse d'épaisseur e, et d'indice n = 1,33. Elle est éclairée perpendiculairement par un
faisceau de lumière blanche, dont on observe la réflexion.
1.a Exprimer la différence de phase entre les deux rayons réfléchis.
1.b En déduire une condition pour qu'il y ait interférence constructive sur λ, n et e.
1.c Faire de même pour qu'il y ait interférence destructive.
On observe des interférences constructives pour λ1 = 600nm et des interférences destructives
pour λ2 = 450nm. On n'observe pas de minimum d'intensité entre ces deux valeurs.
2.a En déduire son épaisseur e supposée uniforme.
Sous l'effet de la gravité, l'eau savonneuse s'écoule et le film s'amincit, au sommet de la bulle en
premier.
2.b Quelle est la couleur au sommet de la bulle juste avant qu'elle n'éclate ?
!9. Monochromateur à réseau
Pour obtenir de la lumière monochromatique à partir d’une!source S de lumière blanche
(400nm<λ<750 nm), on réalise un monochromateur à l’aide
d’un réseau plan de pas a = 820 nm suivant le montage
indiqué. Les axes des deux lentilles (identiques, de distance
focale f = 10 cm) sont orthogonaux et le plan du réseau est
la bissectrice de ces deux axes.
a- Quelle est la longueur d’onde de la lumière arrivant au
point O ?
b- La fente de sortie est de largeur 2l = 2 mm (centrée sur
O). Quel est le domaine de longueur d’onde sélectionné à
la sortie de cette fente ?
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !