UE2-JJH-Pathologie_generale_de_linflammation

publicité
UE2 – Biopathologie
Mr HOARAU
Date : 25/09/2015
Promo : DFGSM2 2015-2014
Plage horaire : 16h-18h
Enseignant : Mr HOARAU
Ronéistes : HANS Hugo
KAUFFMAN Charles
Pathologie générale et inflammation
I.
Généralités
1. Définition
2. Un peu d'Histoire
3. Les causes de l'inflammation
II. Acteurs et déroulement de la réaction inflammatoire
1. Phase vasculo-exsudative
2. Phase cellulaire
3. La détersion
4. Phase terminale : réparation et cicatrisation
Cette première partie a pour but de décrire ce qui se passe au cours de l’inflammation. L’inflammation est
un mécanisme associé à des pathologies infectieuses, traumatiques, métaboliques… Suivre l’évolution des
marqueurs de l’inflammation permet de suivre l’évolution de ces pathologies.
En clinique, beaucoup de pathologies seront associées à des phénomènes inflammatoires et il est bon de
pouvoir suivre l’inflammation. On va s’intéresser dans ce cours aux médiateurs de l’inflammation, aux
molécules ou aux cellules qui interviennent au cours de l’inflammation donc il faut connaître le processus
inflammatoire.
1/35
I.
Généralités
1. Définition
L’inflammation est une réaction, des tissus vivants vascularisés, à une agression. La composante
vasculaire est très importante dans la mise en place de la réaction inflammatoire ce qui veut dire que tout ce
qui est tissu non vascularisé ne va pas être à l’origine d’un phénomène inflammatoire, ils vont pouvoir subir
les conséquences de l’inflammation mais les tissus non vascularisés ne sont pas à l’origine d’une
inflammation même si certains vont me dire « Qu’est-ce qu’une tendinite ? » alors que le tendon n’est pas
un tissu vascularisé. Ce sera du fait de l’inflammation qui se trouve autour du tendon, qui entraînera des
conséquences sur le tendon mais les tissus vascularisés ne font normalement pas d’inflammation.
L’inflammation va avoir en général un aspect localisé et donc on va avoir des phénomènes locaux qui vont
se traduire par le syndrome inflammatoire. Lorsque cette inflammation n’est plus localisée mais est passée
au niveau systémique on peut avoir des symptômes systémiques tels que la fièvre (très bon marqueur d’un
mécanisme pathologique associé à l’inflammation et l’un des premiers qui apparaît). C’est donc une
dérégulation au niveau du centre hypothalamique qui va se traduire généralement par l’augmentation de la
température mais aussi dans certains cas peut aussi se traduire par une hypotension bien que l’inflammation
a principalement des effets locaux puisque l’inflammation se déroule dans le tissu conjonctif.
Donc l’inflammation se traduit par des phénomènes locaux qui se déroulent au niveau du tissu
vascularisé et qui a pour objectif notamment dans les cas d’infection d’éliminer les agents pathogènes ou
si ce n’est pas infectieux de nettoyer le tissu lésé pour le reconstruire. Malheureusement, dans certains
cas, si la réponse inflammatoire est trop intense, elle peut être à l’origine d’une destruction du tissu. Cela
peut conduire à des pathologies chroniques qui vont dépendre de l’agent infectieux qui a infiltré le tissu et
du type du tissu. Il ne faut pas systématiquement faire de lien entre infection et inflammation. Un
traumatisme au niveau d’un tissu va être associé dans la majeure partie des cas à une inflammation qui n’est
pas forcément d’origine infectieuse.
2. Un peu d'Histoire
Les caractéristiques de l’inflammation ont été décrites
pour la première fois par Hippocrate.
On les appelle les signes cardinaux de
l’inflammation qui sont au nombre de 5 :
Les symptômes locaux sont :
- douleur
- chaleur car infiltration cellulaire très
importante
- grosseur car tissu gonflé généralement associé
à un œdème
- rougeur car l’inflammation nécessite
l’intervention d’un tissu vascularisé et ce tissu va
subir des modifications
Lorsqu’on passe au niveau systémique :
- impotence, c’est-à-dire fatigue généralisée.
On peut reconnaître donc facilement une réaction
inflammatoire.
2/35
On appelle Triade Hippocratique les 3 premiers symptômes découverts par Hippocrate qui sont : douleur,
grosseur et chaleur.
3. Les causes de l'inflammation
Le plus souvent on parle d’inflammation dans un contexte infectieux. A une infection est toujours
associée une inflammation MAIS toutes les inflammations ne sont pas d’origine infectieuse.
Ci-dessus sont représentées les pathologies chroniques toujours associées à une inflammation :
-
Développement tumoral (cancer) : on trouve toujours associé un processus inflammatoire
Maladies auto-immunes
Diabète de type 2
Maladies cardio-vasculaires
Maladies liées au dysfonctionnement du système immunitaire
Obésité (cas de nature non infectieuse) ou sédentarité (qui sont des situations causant souvent du
stress) associée à un surpoids, très souvent, à cause d’un développement trop important du tissu
adipeux. On va observer différentes dérégulations (notamment au niveau de la production
d’insuline) qui vont entraîner une activation des processus inflammatoires via notamment à la
dérégulation des cellules du système immunitaire (macrophages qui vont se mettre à produire des
cytokines pouvant entraîner par exemple la formation de plaques d’athéromes ou des dérégulations
au niveau du SNC).
Les causes de l’inflammation :
-
traumatismes (dommage au tissu) souvent associés à un défaut de vascularisation
agents physiques (exemple : coup de soleil)
agents chimiques (exemple : acides/bases)
infection (endogène/exogène)
corps étrangers
réaction immunitaire (allergies : réaction inappropriée du système immunitaire)
maladies immunitaires
3/35
II. Acteurs et déroulement de la réaction inflammatoire.
1) Inflammation aigue : Il y a deux phases. D’abord une phase vasculaire (la vascularisation des
tissus joue un rôle important) puis une phase cellulaire.
Le but de ces 2 phases est de faire une détersion, c’est à dire un nettoyage des tissus qui ont été
endommagés.
Lorsque l’inflammation se fait correctement elle est simplement aiguë et doit permettre la
reconstitution du tissu à l’identique. Dans certains cas l’inflammation aiguë peut évoluer en :
2) Inflammation chronique qui a du mal à se résoudre et très souvent va aboutir à un mécanisme de
cicatrisation ou de fibrose. (3-4 semaines voir d’avantage)
Images : Inflammation chronique au niveau du foie. Foie qui devient cirrhotique et qui peut aboutir à une
fibrose.
Aspect du foie très alarmant, entraîne des destructions tissulaires, un comblage du tissu par du collagène et
donc perte fonctionnelle du tissu.
L’inflammation est une succession d’évènements qui a pour but dans un premier temps, si elle est d’origine
infectieuse ou traumatique, d’aller nettoyer le tissu (éliminer l’agent pathogène ou éliminer les débris
tissulaires issus de la fibrose…). C’est ce qui va entraîner les symptômes apparents associés à
l’inflammation caractéristique. Cependant la phase effective visuelle ne dure pas forcément pas très
4/35
longtemps mais ce n’est pas parce que l’œdème inflammatoire a disparu que le processus inflammatoire
s’est terminé.
Le tissu inflammatoire, une fois qu’il a été correctement nettoyé, permet la mise en place d’un infiltrat de
cellules au niveau de l’œdème pour former ce qu’on appelle un tissu de granulation qui a pour but de venir
débarrasser l’œdème de tous les « déchets » et surtout de préparer la reconstruction et le remodelage du
tissu.
L’inflammation (dans sa forme aiguë) s’étend sur 24 - 48H à 3 - 4 jours et normalement, après elle devient
inapparente puisqu’on a un remodelage du tissu jusqu’à sa reconstruction finale. Bien entendu la durée et
l’intensité va varier et va dépendre de la nature et du tissu qui a été infecté et de l’intensité des dommages.
Voici les différentes étapes de la réaction inflammatoire :
1. Phase vasculo-exsudative
Elle se divise en 3 parties : la congestion active, l’œdème inflammatoire et la diapédèse leucocytaire.
La congestion active : A pour but de modifier le diamètre des vaisseaux, sous l’action de nerfs
vasomoteurs, pour permettre l’apport local de médiateurs chimiques par la circulation sanguine. On a un
phénomène de vasoconstriction aussi bien au niveau veinulaire qu’au niveau artériolaire (petits vaisseaux).
Puis immédiatement après vous allez avoir un phénomène de vasodilatation mais essentiellement du côté
artériolaire, le côté veinulaire lui va rester comprimer.
 La conséquence de ce mécanisme est une augmentation de la pression hydrostatique notamment au
niveau des petites artérioles et donc une pression qui va réduire d’une part le flux circulatoire et
venir comprimer les vaisseaux. Cela va permettre la 2ème étape de la phase vasculo exudative qu’on
appelle la formation de l’œdème inflammatoire. Des médiateurs chimiques qui vont être produits au
niveau du tissu endommagé vont venir activer cet endothélium vasculaire pour le rendre perméable
à un liquide qu’on appelle l’exsudat qui est constitué principalement d’eau et de protéines
plasmatiques qui vont tout simplement pouvoir passer à travers les cellules de l’endothélium
vasculaire et qui va venir se répandre au sein du tissu qui a subi un traumatisme. On a donc une
phase exsudative qui se fait ici. Les mécanismes qui permettent le passage de ces composants
d’origine sanguine peuvent faire intervenir différents phénomènes. Ça peut être lié à des lésions
directes au niveau des vaisseaux et dans ce cas-là vous avez des ruptures des vaisseaux et donc des
5/35
mécanismes de coagulation qui vont être activés. Soit ça se passe par des mécanismes de
rétractations endothéliales, donc vous avez des cellules endothéliales qui vont se comprimer et
laisser passer des constituants de leur cytoplasme. Le mécanisme le plus couramment documenté
c’est un passage de liquide par transcytose, donc il y a du liquide au niveau sanguin qui va être
absorbé et qui va être passé au niveau tissulaire. Il existe aussi d’autres mécanismes telles que des
lésions qui vont être provoquées par des leucocytes circulants qui vont vouloir passer et qui vont
endommager l’endothélium et dans certains cas de pathologies, notamment cancéreuses, on des
phénomènes d’angiogenèse qui vont permettre un passage de ce liquide. On va donc avoir des
facteurs plasmatiques qui vont venir quitter la circulation sanguine et on a donc un tissu qui gonfle
d’où la formation de l’œdème, c’est à ce moment-là que vous allez avoir les aspects caractéristiques
de l’inflammation qui vont apparaître.
Ces modifications au niveau vasculaire vont entraîner la formation d’un tissu œdémateux.
L’œdème inflammatoire est rouge du fait de ces modifications au niveau vasculaire. On a un épanchement
au niveau tissulaire.
Images : différents types d’épanchement
On a ici un exsudat c’est à dire le liquide plasmatique qui va quitter la circulation sanguine et venir se
déposer au niveau de la paupière qui va former un œdème de Quincke.
6/35
Œdème de Quincke : épanchement lié à une réaction allergique. Il se fait ici au niveau de la paupière mais
il peut aller également au niveau des voies respiratoires et entraîner une obstruction : danger !
L’exsudat peut aller dans le tissu interstitiel mais peut aussi aller dans les cavités. Ici on est au niveau
du péricarde, avec un exsudat entre myocarde et péricarde dans le cas d’une inflammation au niveau
du myocarde. Développement d’un tissu qui va coller, adhérer au cœur et entraîner une fatigue du
muscle cardiaque.
Transsudat
/!\
Ne pas confondre transsudat et exsudat !
Transsudat : dans l’aspect il entraîne très souvent un dépôt de liquide au niveau des tissus lié à un
mécanisme de sécrétion (due à la gravité). Le tissu va avoir un aspect œdémateux et très souvent il va
être rougeâtre. Un transsudat n’est absolument pas de nature inflammatoire.
Dans le cas d’un transsudat quand on appuie dessus le tissu garde sa forme. Il reviendra à sa forme
initiale mais cela va prendre un certain temps alors que dans le cas d’un exsudat quand on appuie
dessus, l’œdème va immédiatement reprendre sa forme initiale.
(Ronéo d’il y a 2 ans : Le transsudat est un liquide généralement clair composé d'eau et de très peu de
facteurs sériques qui va se déposer naturellement au niveau des tissus de manière purement
mécanique.)
Exsudat : Apport tactile, intense donc le tissu reprend quasi immédiatement son aspect œdémateux.
7/35
Quand vous avez des épanchements au niveau des cavités des organes vous avez dans la cavité péritonéale,
cette collection de liquides, on appelle ça une ascite mais vous allez également avoir des épanchements au
niveau de la plèvre, au niveau pulmonaire ou comme ici au niveau de péricarde.
Aspect inflammatoire observé au niveau cutané.
Allergie : le tissu gonfle
Même chose pour l’urticaire
Lorsque l’exsudat se fait de façon très importante : formation de bulles (exemple : avec le Chik) qui
peuvent fusionner entre elles et donner un aspect de brûlures.
Question élève : Mais comment on fait pour distinguer si c’est une brûlure ou si c’est une cause
inflammatoire ?
Réponse prof : Généralement l’aspect au niveau de l’épiderme n’est pas le même.
8/35
Apport de l’exsudat : facteurs impliqués dans la défense immunitaire :
- Ac sous forme d’Ig,
- facteurs très importants dans la réponse non spécifique de l’organisme c’est-à-dire les molécules du
complément. Ce sont toutes des molécules qui sont capables de se lier à des antigènes provenant
d’agents pathogènes par exemple et qui ont la capacité de les fixer pour permettre leur élimination.
- facteur très important : le fibrinogène qui vient se déposer au sein du tissu œdémateux pour
constituer un maillage de fibres dans l’œdème. Rôle : dès qu’il va traverser l’endothélium
vasculaire, il va rentrer en contact avec tout un ensemble de molécules activatrices qui sont liées aux
dommages des cellules et parmi les facteurs qui vont activer, on va retrouver la thrombine qui est
un facteur qui va permettre au fibrinogène de former des polymères de fibrine et agir même avec le
facteur 12 de la coagulation pour former toute une structure fibrineuse et qui va venir au final
circonscrire toute la zone inflammatoire surtout dans le cas d’une infection (limiter la diffusion de
l’agent pathogène au sein du tissu (si celui-ci produit des toxines limiter leur diffusion et agir de
manière à ce que celles-ci restent locales) et surtout d’empêcher la propagation de l’inflammation).
Année dernière : S’il y a des dommages au niveau vasculaire, la fibrine participe à la formation du caillot
sanguin qui fait aussi intervenir le facteur 12 de la coagulation.
Question élève : La fibrine fait intervenir le facteur 12 de la coagulation ?
Réponse prof : La formation de fibrine à partir de fibrinogène fait intervenir le facteur 12 de la
coagulation. Cela permet la formation des fibres au sein de l’œdème.
9/35
Image : Aspect lié au dépôt de facteurs sériques au niveau du péricarde.
Ici on a une péricardite (inflammation du péricarde) en phase débutante avec apport de facteurs
sériques. Taches blanches = dépôts de fibrine. Ces fibres pour reconstituer normalement le tissu vont
s’associer avec les cellules de soutien (fibroblastes), les cellules endothéliales pour revasculariser le
tissu. Dans le cas de la péricardite on va avoir du tissu qui va s’interposer entre le myocarde et le
péricarde, ce qui gêne les battements du cœur et très souvent cela conduit à une fatigue du muscle
cardiaque. Le but de la fibrine qui est de circonscrire le mécanisme inflammatoire et notamment
participer ensuite à la reconstitution du tissu et peut, dans le cas de tissus qui ne doivent pas adhérer,
entraîner la formation d’un tissu d’adhésion et avoir un effet néfaste sur la récupération.
Tous les termes médicaux se terminant par –ite correspondent à une inflammation.

L’apport local de cellules : la diapédèse leucocytaire
Apport de ce phénomène vasculo-exsudatif : d’abord des facteurs sériques et ensuite des facteurs
cellulaires.
But de cette phase : Initier le recrutement de cellules qui vont intervenir dans la lutte anti infectieuse et qui
vont avoir un rôle à jouer dans la reconstruction du tissu.
10/35
Les cellules leucocytaires, circulantes, vont pouvoir migrer sur le site inflammatoire. La migration se fait
via la diapédèse qui permet à ces cellules de traverser l’endothélium vasculaire. C’est un mécanisme actif
qui nécessite beaucoup d’énergie (œdème chaud). Au niveau du tissu inflammatoire, on a des cellules
résidentes vont émettre un certains nombres de molécules qui vont servir d’alarmes, qui peuvent être
alarmines, et on va retrouver un certain nombre de cellules du système immunitaire et qui vont aller activer
l’endothélium vasculaire afin de lui faire exprimer des molécules d’adhésion qui vont déclencher la réaction
inflammatoire en produisant des facteurs chimio attractants (chimiokines, interleukines) qui vont agir
sur l’endothélium vasculaire et sur les cellules circulantes. Ils stimulent à la surface de ces cellules
l’expression de molécules d’adhésion (sélectines et intégrines sont les 2 grandes molécules d’adhésion).
-
-
-
-
D’abord stimulation de sélectines par les facteurs chimio attractants : facteurs d’adhésion faibles
=> l’interaction entre les molécules d’adhésion des cellules endothéliales et des leucocytes
n’immobilise pas les cellules mais leur permet de rouler à la surface de l’endothélium vasculaire.
Margination : Les cellules vont venir se mettre en contact.
Rolling : elles vont avancer le long de l’endothélium vasculaire en roulant
Plus les cellules se rapprochent de la zone inflammatoire et de la zone où elles vont devoir traverser
=> expression des intégrines : molécules d’adhésion forte qui vont permettre de ralentir le
mécanisme de rolling et de ralentir et immobiliser ces cellules (leucocytes) à la surface de
l’endothélium. Le courant est réduit grâce à la vasoconstriction et à la vasodilatation ce qui fait que
les cellules vont pouvoir marginer beaucoup plus facilement et s’immobiliser.
Passage trans-endothélial qui nécessite une déformation des cellules sous forme de pseudopodes
pour traverser l’endothélium et gagner le tissu inflammatoire. C’est un mécanisme actif qui
nécessite beaucoup d’énergie et qui est responsable de la chaleur que l’on ressent au niveau de
l’œdème inflammatoire. Cette traversée se fait grâce à des interactions homotypiques entre
intégrines de même type (interactions très courantes entre molécules de type ICAM : Integrin Cell
Adhesion Molecule).
Les cellules vont ensuite migrer au sein du tissu jusqu’à la zone inflammatoire. Cette migration se
fait par chimiotactisme grâce aux facteurs chimio-attractants (chimiokines).
Figure qui montre au niveau des cellules endothéliales et des leucocytes circulants l’expression des
différentes molécules d’adhésion cellulaire qui sont d’abord la sélectine (interactions faibles, exemple : PSélectine, E-Sélectine) qui interagit du côté des leucocytes circulants via des molécules qu’on appelle des
molécules de type Sialyl, Lewis X donc des molécules sialylées qui vont ensuite être remplacées par
l’intégrine (interaction forte), qui interagissent avec des molécules généralement de type Ig ,qui vont
permettre à ces cellules d’être immobilisées et de traverser cet endothélium.
11/35
Schéma montrant les différentes interactions :
Les cellules circulent dans le flux circulatoire et vont très vite. Sous l’action de ces molécules
chimiotactiques (cytokines), qui vont être produites localement par des cellules résidentes du tissu, vont
servir d’alerte pour induire l’expression de ces molécules d’adhésion à la surface de l’endothélium
vasculaire et des cellules circulantes. Il s’agit d’abord de la sélectine => interactions faibles puis de
l’intégrine => interactions fortes (les immobiliser et leur permettre de traverser le tissu et l’infiltrer
progressivement).
Vidéo : On voit passer le flux circulatoire très rapide avec un capillaire. On a ici la mise en place d’une
réaction inflammatoire suite à un dommage tissulaire qui entraîne des dommages au niveau des cellules
(soit des cellules nécrosées qui vont libérer leurs constituants qui vont servir ce qu’on appelle les alarmines
(= molécules d’alerte) soit entraîner l’introduction de cellules type bactéries, virus… qui par interaction
avec les cellules présentes localement dans le tissu vont entraîner la production de chimiokines qui vont
aller agir sur l’endothélium vasculaire et les cellules circulantes pour permettre à ces cellules de marginer,
d’adhérer, de traverser l’endothélium puis de migrer par chimiotactisme jusqu’au site inflammatoire. Tous
médiateurs chimiques qui vont se retrouver dans la circulation sanguine (localement c’est difficile de
ponctionner un œdème) pourront être dosés.
12/35
2. Phase cellulaire
Après les mécanismes vasculo exsudatifs, le tissu va filtrer un certain nombre de cellules, mais en fait ce
qui déclenche ces mécanismes vasculo exsudatifs : ce sont des cellules présentes initialement dans ces
tissus et qui vont le stimuler. Donc il ne faut pas voir la phase cellulaire comme la suite ou la
conséquence du mécanisme vasculo exsudatif. Très souvent, elle initie cette réaction vasculo exsudative
et néanmoins elle va ensuite permettre l’apport de nouvelles cellules au sein du tissu et la mise en place de
la réaction cellulaire à proprement dit.
Les cellules résidentes dans le tissu :
Mastocytes et macrophages : cellules qui résident localement et qui ont un rôle d’alerte. Elles sont en
attente d’un dommage tissulaire pour pouvoir s’activer. Ce sont des cellules granuleuses qui possèdent dans
leur cytoplasme des granules renfermant différents constituants qui peuvent être libérés très rapidement
pour aller agir sur l’endothélium vasculaire (et sur les leucocytes circulants) et déclencher les phénomènes
de vasodilatation et de vasoconstriction, accroître la perméabilité vasculaire dans un premier temps puis
induire la diapédèse leucocytaire.
L’activation de ces cellules (mastocytes et macrophages résidents) passe par une interaction entre des
récepteurs présents à la surface de ces cellules avec des agents pathogènes qui ont pénétrés le tissu suite à
une infection par ex, soit avec des débris cellulaires endommagés au sein des tissus ou avec des cellules
anormales.
Puis ces cellules vont dégranuler, c’est-à-dire libérer leurs constituants présents dans le cytoplasme afin
« d’agresser » le tissu, c’est à dire détruire ce qui doit être éliminé.
Un des constituants très importants des granules des mastocytes : histamine. On peut aussi retrouver de la
sérotonine. Ce sont des facteurs ayant un effet vasodilatateur mais qui peuvent aussi avoir un effet
vasoconstricteur et qui vont aller agir directement sur l’endothélium vasculaire pour déclencher la phase
vasculo exsudative.
Les macrophages produisent plutôt des cytokines, parmi elles, le groupe des chimiokines qui sont des
molécules chimio-attractives qui vont agir sur l’endothélium vasculaire et vont permettre de recruter des
leucocytes et vont permettre à ces cellules de traverser l’endothélium vasculaire pour gagner le tissu. C’est
ce qui va permettre de recruter dans un 1er temps les PNN (Poly Nucléaire Neutrophile) qui infiltrent le
tissu pour faire soit de la lutte anti-infectieuse soit venir nettoyer ce tissu des débris et éliminer les agents
étrangers au sein du tissu.
Un autre facteur pouvant être apporté par la circulation sanguine notamment en cas de dommages
vasculaires : les plaquettes. Elles produisent de l’histamine et ont le même rôle que les mastocytes (action
sur l’endothélium vasculaire).
13/35
Conséquence du mécanisme cellulaire : apport local de cellules leucocytaires qui vont infiltrer le tissu et qui
vont entraîner la formation d’un granulome inflammatoire : tissu infiltré par des cellules provenant de la
circulation sanguine (cellules phagocytaire : PMN = Poly Morphonucléaire Neutrophile, monocytes qui
en traversant vont s’activer et changer de phénotype et devenir ce qu’on appelle des macrophages,
puis plus tardivement apport de lymphocytes T (qui se transforment éventuellement en LTc) et B (qui se
transforment en plasmocytes pour augmenter leur production d’anticorps) => défense anti-infectieuse mais
aussi activation prolifération de cellules résidentes constitutives du tissu , fibroblaste (formation de
collagène ou transformation en myofibroblaste afin de refermer l’œdème), cellules endothéliales =>
revascularisation du tissu après nettoyage).
Point important à retenir :
Suite à la réaction vasculo exsudative, les premières cellules à infiltrer le tissu sont les PMN (qui sont des
granulocytes) dans les quelques minutes ou les heures qui suivent l’inflammation de l’endothélium.
Dans les minutes qui suivent le déclenchement de la réponse inflammatoire, les PMN vont infiltrer le tissu
et vont continuer à l’infiltrer pendant 24-48H. Puis les PMN vont laisser la place à un 2e type de cellules
que sont les macrophages. Plus la réaction inflammatoire évolue, plus on aura de macrophages et moins on
aura de PMN. Des cellules monocytaires sont apportées par la circulation sanguine, elles traversent
l’endothélium vasculaire et s’activent. On a un changement de morphologie => elles deviennent des cellules
macrophagiques. On parle à ce moment d’inflammation macrophagique.
 Les monocytes sont des cellules circulantes. Une fois qu’elles ont été activées et ont traversé
l’endothélium vasculaire, on les appelle des macrophages.
Plus tardivement au sein de ce granulome inflammatoire, on va avoir donc une accumulation de cellules
monocytaires de type macrophages et un peu plus tardivement de lymphocytes. Cela permet au niveau
histologique, selon la constitution du granulome inflammatoire, de déterminer si on est dans une phase
initiale ou une phase beaucoup plus tardive de l’inflammation.
La présence dans le granulome inflammatoire de cellules résidentes (fibroblastes et cellules
endothéliales) va permettre la synthèse de nouvelles molécules (exemple : collagène/fibres d’élastine) pour
reconstituer le tissu ou utiliser le collagène comme tissu de comblage (si tissu très endommagé).
14/35
Voici un granulome inflammatoire qui provient d’un tissu pulmonaire où on a une infiltration de cellules
(boules noires. Cellules endommagées = coloration marron.) Visible même en radiographie et possibilité
de les confondre avec un développement tumoral s’ils sont de grandes tailles.
Rôle du granulome inflammatoire :
-
-
Libérer des médiateurs qui vont recruter localement des cellules et permettre à ces cellules d’infiltrer
le tissu grâce au chimiotactisme. Procéder à la lutte anti infectieuse par la production de métabolites
toxiques ou des protéases (action contre des agents anti-infectieux mais vont aussi entraîner des
lésions tissulaires : suite à une inflammation, on assiste à des dommages collatéraux => cellules non
concernées par l’inflammation vont être détruites).
Assurer la détersion du tissu : nettoyage des débris tissulaires, agents infectieux. C’est surtout le
rôle des cellules phagocytaires (PMN et macrophages)
Activité cytotoxique ou réponse humorale des lymphocytes T et B
Globalement, le rôle du granulome inflammatoire est de contenir les dommages causés au tissu et surtout
d’initier le nettoyage de ces tissus : c’est ce qu’on appelle la détersion.
15/35
3. La détersion
C’est le mécanisme qui permet de nettoyer le tissu fusionnel des tissus nécrosés, des agents pathogènes et
de retirer l’exsudat (tout ce qui a été apporté par le mécanisme vasculo exsudatif doit être retiré).
Réaction inflammatoire limitée : détersion interne par la phagocytose. Les cellules phagocytaires vont
ingurgiter ces structures au sein du tissu inflammatoire pour les dégrader et permettre leur élimination.
Dommages aux tissus importants : on ne peut pas faire simplement le mécanisme de phagocytose. On aura
une accumulation de pus dans le tissu qui est lié à l’accumulation des débris cellulaires et même à la mort
des cellules de type PNN, macrophages. On parle de détersion externe qui peut se faire de 2 façons :
- spontanée : au niveau de la peau par exemple elle se fait par fistulation (= tissu s’ouvre et le pus
sort) ou au niveau des conduits internes (bronchiques, urinaires, intestinaux)
- chirurgicale
Types cellulaires qui infiltrent le tissu :
-
Poly Nucléaires Neutrophiles (on a l’impression que la cellule a plusieurs noyaux mais il s’agit d’un
seul noyau polylobé). Dans les polynucléaires on a 3 familles : neutrophiles, basophiles et
éosinophiles. Dans la réaction inflammatoire, le 1er à infiltrer est le PNN dans les minutes qui
suivent le déclanchement de la réaction inflammatoire et qui se poursuit pendant 24-48H. Ces
cellules ont une durée de vie limitée (3-4 jours max). Comme ce sont des cellules phagocytaires, une
fois activées, si elles trouvent des cellules à phagocyter elles vont retourner leur action contre ces
cellules. Si elles n’en trouvent pas, elles vont phagocyter n’importe quoi (exemple : les cellules du
tissu). D’où la nécessité de limiter la durée de vie de ces cellules qui sont dangereuses une fois
activées.
Question élève : C’est le granulome inflammatoire qui sécrète des métabolites toxiques ?
Réponse prof : Granulome = accumulation au sein du tissu endommagé de cellules qui l’ont infiltré. Ce
sont ces cellules qui vont libérer des facteurs chimio attractants (chimiokines, cytokines…) et des enzymes
qui ont pour but d’aller détruire l’agent infectieux si c’est une infection, d’aller dégrader les débris
cellulaires si c’est une inflammation d’origine traumatique.
Question élève : Les lésions tissulaires vont toucher le tissu sain ?
Réponse prof : Elles vont toucher les cellules saines au sein de ce tissu. Les cellules qui infiltrent le tissu
ont pour rôle principal (on pourrait penser) d’aller éliminer tout ce qui est anormal au sein de ce tissu
(agents infectieux, cellules nécrosées…). Leur pouvoir cytotoxique ne va malheureusement pas se retourner
essentiellement contre tout ce qui est débris tissulaire. Toutes les cellules saines vont être agressées et le
tissu va être encore plus détruit. La réaction inflammatoire peut donc être dommageable vis-à-vis du tissu
si elle est trop exacerbée. Pour les tissus pouvant se régénérer : pas de problème. Mais par exemple pour le
SNC (pas de capacité de régénération), le tissu perdu est définitivement perdu.
16/35
Ce qui va être responsable de ce pouvoir destructeur, c'est notamment la présence de ces granules dans le
cytoplasme des polymorphonucléaires neutrophiles. On va retrouver chez eux 2 types de granules : les
primaires (= spécifiques) et les secondaires (= azurophiles). Ils diffèrent par les constituants qu'on va y
retrouver mais si l'on regarde globalement ce que l'on retrouve dans ces granules, on y retrouve tout un
ensemble d'enzymes qui vont participer ou des facteurs d'inhibition.
On va retrouver par exemple dans les granules primaires de la lactoferrine, il s'agit d'un facteur qui va
permettre notamment d'immobiliser le fer libre dans le milieu (dans un but plutôt anti-infectieux ou
antibactérien car lorsque l'on a un tissu infecté de bactéries, celles-ci ont notamment besoin de fer donc
l'une des stratégies consiste à immobiliser le fer libre dans le tissu pour empêcher les agents bactériens de
pouvoir proliférer facilement).
Nous allons donc retrouver dans ces granules primaires, des facteurs antibactériens, du lysozyme (qui va
pouvoir s'attaquer à la paroi des bactéries), de la collagénase (il s'agit d'un agent pouvant dégrader le
collagène du tissu), nous allons également retrouver la libération de différents constituants qui vont
permettre à d'autres cellules notamment leucocytaires de venir adhérer au tissu, on va retrouver aussi
différents enzymes : la phospholipase A2 par exemple qui va intervenir dans le déclenchement et
l'augmentation de la réponse inflammatoire.
Dans les autres types de granules nous allons retrouver très souvent les mêmes types de constituant tels que
les lisozymes, les phospholipases... et aussi d'autres constituants qui vont participer souvent au recrutement
de nouvelles cellules qui vont stimuler finalement le chimiotactisme ou permettre d'agresser le tissu
(notamment éliminer tout ce qui est anormal au sein de ce tissu)
17/35
Détersion interne : la phagocytose
Le polymorphonucléaire est une cellule phagocytaire.
Tous les contenus de ces granules peuvent soit être libérés dans le milieu extérieur (et donc aller détruire
tout ce qui est agent pathogène etc) mais ils peuvent également être utilisés en interne au niveau de la
cellule notamment si c'est une inflammation qui suit une infection et pouvoir aller au niveau de cellules
d'endocytose, d'aller détruire directement des agents pathogènes.
La phagocytose qu'elle soit liée à une lutte anti-infectieuse ou à l'élimination de débris tissulaires, ça passe
toujours par la reconnaissance entre la cible et la cellule phagocytaire qui elle possède à sa surface une
multitude de récepteurs ,que l'on appelle les PRR (= Pathogens Recognition Receptors) et qui vont pouvoir
reconnaître soit des déterminants imminents antigéniques particuliers à la surface d'agents pathogènes, soit
reconnaître d'autres déterminants antigéniques anormaux à la surface des cellules (par ex la présence de
phosphatidylsérine à la surface de certaines membranes de cellules qui ont été endommagées). Ces
récepteurs vont permettre dans un premier temps d'adhérer à ces cellules, ces cibles et de pouvoir ainsi les
englober. On aura à ce moment-là des phénomènes d' évaginations (déformations) de la membrane de ces
cellules qui permettront d'englober ces cibles à l'intérieur de vacuoles d'endocytose et au niveau desquelles
tous ces granules vont pouvoir venir fusionner pour libérer tout leur pouvoir destructeur et notamment
éliminer soit l'agent pathogène ou des débris tissulaires qui ont été absorbés.
A) Opsonisation : Le phagocyte (neutrophile ou macrophage) possède à sa surface des récepteurs PRR (=
Pathogen Recognition Receptors) ou encore des récepteurs que l'on appelle des opsonines.
Ces opsonines font partie des facteurs sériques qui ont été apportés au niveau de l'œdème. Ils vont aller se
fixer aux particules et agents pathogènes qui sont alors dits « opsoninés ». Ces opsonines ont pour vocation
de rendre les agents pathogènes plus appétissants pour qu'ils se fixent plus facilement aux phagocytes.
(Les opsonines ne seraient donc pas des récepteurs comme dit à l'oral mais plutôt des substances pour
lesquelles il existe des récepteurs).
18/35
B) Adhérence : entre le phagocyte et l'agent pathogène ou des débris de cellules nécrosées.
C) Englobement : des structures membranaires vont se développer et entraîner la formation d'une vacuole
d'endocytose appelée
D) phagosome, dans lequel la bactérie, le virus ou le matériel cellulaire est englobé.
E) Le phagosome va fusionner avec des lysosomes qui contiennent tout un arsenal capable de dégrader la
particule ingérée, et ainsi former un phagolysosome.
F) Digestion : La particule ingérée est dégradée au sein du phagolysosome.
2è vidéo :Vidéo de la phagocytose d'une bactérie par un neutrophile :
Afin de montrer ce pouvoir chimiotactique. Généralement, la phagocytose n'est que le point ultime d'une
poursuite entre des agents infectieux et des cellules phagocytaires au sein du tissu et ça permet facilement
de comprendre pourquoi lorsque l'on a un tissu œdémateux ou inflammatoire, celui-ci est généralement
chaud puisqu'à l'intérieur, il y a plein de choses qui s'y déroulent (libération importante d'énergie).
La phagocytose et les dérivés oxydatifs :
Ces cellules phagocytaires (polymorphonucléaires neutrophiles, monocytes, macrophages...) ont également
la capacité de produire un certain nombre d'espèces oxygénées réactives ou d'espèces dérivées de l'azote
c.à.d. des espèces nitrées réactives (NOS). Au cours de l'inflammation, elles vont être produites au sein du
tissu et vont pouvoir agresser tout ce qui est potentiellement étranger au tissu mais aussi éventuellement
des cellules saines.
Nous aurons donc un dommage tissulaire très important. Tout cela peut conduire à une accumulation de pus
dans le tissu qui doit être tôt ou tard éliminé. Lorsque cette accumulation se fait au niveau cutané, on peut
avoir la formation d'abcès qui peut être libéré par détersion externe, spontanée, nous allons donc avoir une
ouverture qui permettra la sortie du pus.
19/35
Détersion externe :
- spontanée : cas d'une fistulation par exemple
- chirurgicale : cas de cholicystique aiguë = lié à la formation de pus au niveau du canal biliaire ce qui va
favoriser le développement microbien à l'intérieur de ce canal et éventuellement entraîner l'infiltration dans
cet espace de cellules phagocytaires. Si cette accumulation ne peut pas s'évacuer par lui-même, il faut aller
ouvrir et nettoyer (chirurgie).
Inflammations suppurées :
- Ampyème pleural : une infection au niveau du poumon. Il y a accumulation de pus au niveau de la plèvre
et lorsque l'infection persiste, cela donne cet aspect lésionnel.
- Méningite aigue : inflammation qui se fait entre le tissu cérébral et l'enveloppe. Du pus s'accumule entre
les méninges et la pie-mère. Si l'accumulation de pus est trop importante, elle ne peut pas s'évacuer. S'il
s'agit d'une méningite bactérienne, on utilise un traitement antibiotique pour permettre la résorption du pus
et sinon c'est la mort.
20/35
Question d'une élève : Quand on a du pus, est ce qu'il s'agit de cellules mortes ?
Réponse : Le pus correspond au tissu qui a été endommagé. Si c'est d'origine traumatique, il s'agit
éventuellement de cellules nécrosées et si c'est d'origine infectieuse, il peut s'agir de toutes les bactéries,
champignons qui ont été dégradées par les cellules phagocytaires et l'on retrouve aussi à l'intérieur toutes
les cellules qui ont participées à l'inflammation (PMN, monocytes, macrophages), qui ont infiltrées le tissu
pour faire de la lutte anti-infectieuse par exemple mais qui elles même tôt ou tard elles vont mourir. Le but
est donc d'un mélange de tout ce qui est débris tissulaires exogènes, étrangers dégradées et même des
cellules qui ont participé à la lutte anti-infectieuse.
Lorsque l'on a par exemple le canal biliaire qui est bouché, on aura beau donner des antibiotiques,
potentiellement l'infection sera maitrisée mais le pus ne va pas s'évacuer par lui-même. Il faut aller ouvrir
s'il ne s'évacue pas par lui-même.
-
Exemple d'une réaction inflammatoire non liée à une infection : la goutte
Une inflammation n'est pas toujours associée à une infection. Voilà un exemple d'inflammation associée à
un désordre métabolique : la goutte. Un tissu qui a les mêmes caractéristiques que celles de l'inflammation :
œdème rouge, chaud et généralement douloureux.
Dans le cas de la goutte (appelée « la maladie des gros mangeurs »), il est lié à l'accumulation d'acide urique
dans les tissus. L'acide urique correspond à un des produits de dégradation des acides nucléiques
notamment l'ADN.
Lorsqu'on mange beaucoup de viande, on peut avoir une accumulation d'acide urique dans les tissus
notamment au niveau des articulations. On peut voir à ce moment-là la formation de cristaux d'urates qui
vont être identifiés par les cellules résidentes du tissu comme étant des structures de nature étrangère. Elles
21/35
vont donc activer localement des monocytes, macrophages résidents et vont déclencher le mécanisme
inflammatoire en produisant des chimiokines, cytokines et entraîner des mécanismes de vasodilatation ainsi
que l'infiltration de nouvelles cellules.
Le but est donc ici d'éliminer les cristaux d'urate mais ceux-ci sont d'une taille assez importante. Les
cellules phagocytaires n'ont donc pas la capacité de les éliminer. Le seul moyen est donc de se mettre au
régime et permettre à cet acide urique de s'éliminer progressivement.
Cependant du fait de l'infiltration du tissu par les cellules phagocytaires, celles-ci vont entraîner une
agression du tissu. Donc très souvent, on va traiter la goutte avec des anti-inflammatoires puisque le
problème est lié finalement à un système immunitaire qui s'active (ce qui est normal puisque les cristaux
d'urate sont bien anormaux) mais si on laissait l'inflammation se faire, elle serait beaucoup plus
dommageable pour le tissu que dans le cas d'une infection par exemple. Il s'agit donc ici de limiter
l'inflammation avec des anti-inflammatoires.
Les abcès :
La problématique qui se pose très souvent est que quand vous avez une inflammation qui se produit dans
des tissus faiblement vascularisés ou dans des tissus qui comportent une structure adipeuse importante,
ici nous avons le cas de l'abcès dentaire, ce qui peut se produire c'est que si l'abcès n'arrive pas à s'ouvrir et
à libérer le pus qu'il contient, puisqu'on a un œdème inflammatoire qui est constitué de fibrine qui délimite
ce foyer infectieux, très souvent la destruction du tissu va se faire au centre de ce foyer inflammatoire et
donc nous allons avoir accumulation de pus sans possibilité de sortie, d'évacuation et à ce moment-là, le
seul moyen de mettre fin à la réaction inflammatoire c'est d'aller ouvrir pour libérer le pus .
22/35
Cas d'abcès cérébral : au niveau du SNC, les tissus n'ont pas de capacité de régénération. Tout dommage du
tissu va entraîner des pertes fonctionnelles
Ulcère gastrique : où l'on peut assister à des mécanismes de perforation du fait de cette activité des cellules
phagocytaires qui vont créer des trous qui éventuellement ensuite en s'aggravant peuvent aller toucher des
vaisseaux se trouvant à proximité et pouvant entrainer des hémorragies.
Autre réaction inflammatoire : l'allergie
Histamines et mastocytes :
Les mastocytes sont des cellules granuleuses qui ressemblent beaucoup aux PMN si ce n'est que lorsqu'on
les regarde au microscope, elles n'ont pas un noyau avec un aspect plurilobé.
Habituellement, elles sont impliquées dans le déclenchement de la réponse inflammatoire au niveau
tissulaire mais on en parle surtout car elles sont impliquées dans les mécanismes allergiques.
Certaines personnes ont des prédispositions notamment lorsqu'elles sont en contact avec des allergènes
(pollen, poils...) vont se mettre à déclencher une réponse anticorps et au lieu de produire d'abord des IgM
puis des IgG, elles vont se mettre à produire directement des IgE et les mastocytes sont des cellules
classiquement impliquées dans la lutte antiparasitaire principalement avec ces IgE.
Certaines personnes vont développer des IgE qui vont se fixer préférentiellement au niveau de ces
mastocytes et ces mastocytes possèdent dans leur cytoplasme des granules qui contiennent notamment de
l'histamine mais également de la sérotonine par exemple. Il s'agit de puissants médiateurs de
l'inflammation puisqu'ils vont agir sur l'endothélium vasculaire pour provoquer la vasodilatation.
Dans les cas des allergies, le contact avec les allergènes va déclencher un mécanisme exacerbé où les
mastocytes vont se mettre à dégranuler suite à l'interaction avec ces IgE et libérer massivement ces facteurs
entraînant ainsi des vasodilatations.
Cela peut entrainer des symptômes localisés caractéristiques de l'inflammation avec des œdèmes qui
peuvent être plus ou moins développés mais qui dans certains cas extrêmes peuvent entraîner des
phénomènes de dégranulation systémique c'est à dire que tous les mastocytes vont se mettre à dégranuler
en même temps et à ce moment-là, nous avons un phénomène de vasodilatation qui est généralisé et surtout
nous allons avoir un phénomène de vasoconstriction qui peut entraîner suite à l'évanouissement, un
étouffement de la personne et donc peut conduire à la mort.
23/35
Les mastocytes jouent un rôle très important de déclencheurs de l'inflammation au niveau tissulaire mais
qui lorsque l'on est prédisposé peut conduire à des mécanismes beaucoup plus dommageables.
Question d'élève : Quelles cellules produisent des IgE ?
Réponse : Elles sont produites par des lymphocytes. Lorsque l'on fait une réaction allergique et que l'on
rencontre un agent pathogène, nous avons d'abord notre immunité non spécifique qui se met en place puis
nous avons notre immunité adaptative qui va se traduire notamment par le développement d'une réponse
mémoire et notamment par la production d'Ac. Classiquement, lorsque l'on fait un 1er contact avec un
agent pathogène, le schéma classique consiste en la production par l'individu d'IgM dans un 1er temps puis
d'IgG qui eux interviennent dans la lutte anti-infectieuse. Les IgE seront produites davantage lorsqu'il
s'agira d'une lutte antiparasitaire.
Chez les patients faisant des allergies, le problème observé est qu'en contact avec des allergènes, les
lymphocytes au lieu de produire des IgM puis des IgG , vont se mettre à produire directement des IgE et on
va donc rentrer dans un schéma qui est plus celui d'une lutte antiparasitaire. Ces IgE via la circulation
sanguine vont pouvoir aller se fixer sur les mastocytes qui sont répartis dans nos tissus. Donc la 1ère fois
normalement qu'on rencontre un allergène, nos lymphocytes B ne font que produire des IgE qui vont aller
se fixer à la surface des mastocytes et la 1ère fois, rien ne se passe car pour déclencher l'activation des
mastocytes, il faut qu'ensuite cette Ig rencontre l'allergène et ce n'est que si l'on rencontre une 2è fois
l'allergène dans un temps relativement court que ces allergènes vont entrainer ce qu'on appelle un « cross
linking » entre les IgE à la surface des mastocytes ce qui va avoir pour conséquence leur activation. Ils
vont se mettre massivement à dégranuler et libérer les constituants qu'ils possèdent dans leurs granules
surtout ces facteurs qui ont une action vasodilatatrice, on va retrouver l'histamine mais aussi des protéases
(il peut donc y avoir des dommages au niveau tissulaire). Ils vont également libérer d'autres facteurs
cytokiniques qui vont participer au déclenchement de l'inflammation. Il s'agit d'un mécanisme de
fonctionnement anormal. Chez un individu normal, lorsqu'il rencontre un allergène, ses mastocytes ne
produisent pas d'IgE, ce n'est que dans les cas où l'on a des personnes prédisposées que ces mastocytes
vont se mettre à produire d'emblée des IgE.
24/35
La douleur :
Qu'est ce qui provoque la douleur au cours de l'inflammation ?
S'il s'agit d'une douleur d'origine traumatique (exemple : coup de marteau), la première chose est que nous
allons avoir un influx nerveux qui va faire que l'on va réagir mais très souvent nous allons avoir au cours de
l'inflammation une douleur qui est persistante et ne fait donc pas intervenir le même type de nerf et est lié à
ce qu'on appelle des nerfs nocicepteurs qui sont présents au niveau des tissus. Ces nerfs sont sensibles à
ces différents médiateurs de l'inflammation qui sont libérés et vont donner l'alerte au niveau du SNC.
La douleur est donc liée à la production locale de ces facteurs chimiques qui vont aller stimuler ces nerfs en
sachant que l'aspect œdémateux du tissu va faire également que nous allons avoir ces nerfs qui vont être
comprimés et vont donc continuer à envoyer un influx nerveux.
25/35
Différences entre inflammation aiguë et inflammation chronique :
Inflammation aigue :
 relativement limitée dans le temps
 réponse immédiate à un agent agresseur, fait généralement suite à une agression brève et peu
dommageable pour le tissu (de courte durée : quelques jours à quelques semaines)
 installation brutale (phénomènes vasculo-exsudatifs intenses dès le départ)
Dans certaines conditions, elle peut évoluer vers une inflammation chronique c'est à dire que bien que
l'agent infectieux ai été partiellement ou totalement éliminé (si la cause est infectieuse), l'inflammation va
persister pendant relativement longtemps (plusieurs mois à plusieurs années) et aura tendance à ne pas
guérir. Cela veut dire que le tissu va être constamment agressé et va généralement aboutir à une
inflammation de nature dégénérative, avec perte de fonctionnalité du tissu.
Qu'est ce qui peut expliquer l'évolution vers l'état chronique ?
Inflammation chronique :
 Si l'inflammation est liée à un agent pathogène, ça peut être tout simplement lié à la persistance de
l'agent pathogène (le système immunitaire n'arrive pas à contrôler l'infection) de ce fait la détersion
est incomplète.

Ça peut être lié à un tissu qui est régulièrement agressé (répétitive) et va donc aboutir à des
destructions tissulaires.
 C'est souvent associé à des désordres de nature immunitaire qui peuvent être soit liés :
- à des maladies auto-immunes
- à désordres dysimmunitaires (certains compartiments du système immunitaire sont déficients). Exemple :
hépatite chronique suite à une infection hépatite B ou C
Image = coupes du poumon
En haut à gauche : inflammation aiguë pulmonaire.
On observe dans l'espace inter-alvéolaire, l'infiltration de cellules qui va être surtout de type PMN.
Malheureusement si cette inflammation persiste, ce que l'on va observer c'est un remplacement progressive
dans cet espace inter-alvéolaire des PMN par des monocytes, macrophages et ensuite par des lymphocytes.
26/35
Or les macrophages et les lymphocytes vont avoir une action beaucoup plus dommageable sur le tissu que
les PMN.
Cela va entraîner une destruction au niveau des parois alvéolaires et avec le temps une destruction de ces
alvéoles ainsi qu’un épaississement au niveau des parois. Il y aura donc une prolifération de cellules
endothéliales (afin de tenter de reconstruire le tissu) qui vont essayer de revasculariser le tissu toutefois ce
qui va être reconstruit ne va pas avoir la même fonction de ce qui était là auparavant, en l'occurrence ici on
aura une perte de la capacité respiratoire. On va reboucher le tissu endommagé par quelque chose d'autre
pour éviter de laisser un espace vide (tissu de comblage)
Le macrophage :
Souvent associé à l'inflammation chronique, un type cellulaire que l'on va retrouver c'est le macrophage.
On parle souvent du système monocyte-macrophage. Les monocytes sont des cellules circulantes qui une
fois qu'elles ont été recrutées au niveau d'un foyer inflammatoire en traversant l'endothélium vasculaire,
elles vont notamment être activées et vont changer leur morphologie puis elles vont acquérir leurs
compétences notamment phagocytaires. Il faut savoir que les monocytes ont très peu de capacité à faire des
phagocytoses alors que les macrophages sont eux des phagocytes professionnels.
La morphologie des macrophages n'est pas la même en fonction des tissus qu'ils infiltrent. Pour pouvoir les
distinguer, on les octroie des noms différents :
 macrophages du SNC = microglies
 macrophages du tissu osseux = ostéoplastes
 macrophages du foie = cellules de Kupffer
 macrophages au niveau de la peau = cellules de Langerhans
Ce sont tous à la base des macrophages, leur fonctionnalité reste donc la même.
27/35
Image ci-dessus :
 à gauche = monocyte (une cellule monocytaire est 4-5 fois plus petite qu'une cellule
macrophagique). Lorsqu'un monocyte acquiert sa capacité phagocytaire, elle devient plus grosse et
lorsque celui-ci devient macrophage, la constitution des granules va être modifiée pour pouvoir
répondre à cette fonctionnalité nouvelle de ces cellules.

à droite = un macrophage
→ Lien entre macrophages & lymphocytes T :
La problématique qui se pose lorsqu'on évolue vers une phase chronique de la réaction inflammatoire, c'est
la relation qui va s'établir entre les cellules macrophagiques et les cellules lymphocytaires (qui vont infiltrer
le tissu un peu plus tardivement).
Au niveau du tissu enflammé, les macrophages vont participer à l'activation des cellules lymphocytaires
qui vont infiltrer le tissu en faisant de la présentation antigénique et en produisant de l'interleukine 12 (IL12) ce qui va permettre de stimuler, activer ces lymphocytes T notamment dans le cas d'une lutte antiinfectieuse. Ces lymphocytes vont d'une part se mettre en expansion clonale et vont produire de nouvelles
cytokines parmi lesquelles de l'interféron λ (IFN-λ) qui est aussi une cytokine également impliquée dans
l'activation des macrophages.
Donc au sein du tissu inflammatoire chronique, on rentre en fait dans une boucle d'amplification de
l'inflammation qui aura du mal à se résorber.
La conséquence au niveau des macrophages est qu'ils vont se mettre à produire d'avantage de cytokines proinflammatoires parmi lesquelles le TNF et l'interleukine 1 (IL-1) qui vont pouvoir stimuler d'avantage le
regroupement des autres cellules.
Du fait de cette boucle d'amplification, on va stimuler l'infiltration du tissu par d'autres cellules
inflammatoires (recrutement amplifié de macrophages, lymphocytes) et donc maintenir l'état inflammatoire
c'est pourquoi l'inflammation aura du mal à se résoudre d'elle-même.
Schéma :
28/35
L'inflammation systémique :
L'inflammation est généralement localisée au sein du tissu mais elle peut avoir un impact au niveau
systémique, notamment à cause de tous ces médiateurs dont les cytokines pro-inflammatoires produites
dans le tissu.
Certaines vont en effet pouvoir rejoindre la circulation et agir sur différentes cibles de l'organisme :




sur le foie (très important +++) : il va produire immédiatement après son contact avec des cytokines
de l'inflammation, des composés chimiques importants dans la lutte anti-infectieuse notamment la creactive protein (CRP sur le schéma), mais aussi des facteurs inflammatoires tels que
l'haptoglobine. Ce sont des facteurs classiquement utilisés en clinique pour faire le suivi d'une
réaction inflammatoire. Ces protéines de l'inflammation vont être libérées dans la circulation
sanguine et vont permettre d'emmener des facteurs protéiques au niveau du site de l'inflammation.
L'interleukine 6 va agir au niveau du SNC, notamment sur l'hypothalamus (organe
thermorégulateur) qui va en retour augmenter la température corporelle et déclencher les
mécanismes de la fièvre. Si cette réaction inflammatoire persiste trop, cela peut entraîner des
phénomènes de fatigue, de somnolence et éventuellement une perte d'appétit (anorexie).
Sur la moelle osseuse pour accélérer les mécanismes de l'hématopoïèse car si l'inflammation
persiste, il est nécessaire de renouveler le pool de cellules, notamment les PMN qui ont une durée de
vie courte mais aussi les monocytes, macrophages et lymphocytes.
Sur les endothéliums vasculaires
29/35

sur les cellules circulantes pour permettre leur recrutement par chimiotactisme et également leur
activation
4. Phase terminale : réparation et cicatrisation
Le but de l'inflammation est de pouvoir circonscrire le site où le dommage a été causé et ainsi de pouvoir
réaliser son nettoyage, sa détersion.
Néanmoins, un tissu qui a subi une inflammation, un dommage doit être restauré autant que possible à
l'identique. Ce qui fait que suite à une inflammation, on va toujours observer la mise en place d'un
phénomène de réparation et éventuellement de cicatrisation afin d'essayer de conserver une fonctionnalité
au tissu autant que possible.
Au sens strict, du moment que la détersion a été effectuée, l'inflammation est terminée. Toutefois, elle va
conditionner la reconstruction du tissu.
La réparation du tissu ne peut s'effectuer que lorsque la détersion a été complète.
La reconstitution du tissu peut avoir 2 issues :
 Soit le foyer lésionnel est de dimension limitée dans l'espace : on peut alors avoir une reconstruction
du tissu à l'identique ce qui est le cas lorsqu'on a eu une l'inflammation qui a été brève et peu
destructive. Condition indispensable = capacité de régénération du tissu. Si ce n'est pas le cas, il
n'y aura pas de reconstruction à l'identique mais un comblage (avec une perte fonctionnelle).
 Par contre, si ces conditions ne sont pas remplies, on aura formation d'une cicatrice qui est la
caractéristique :
→ de dommages tissulaires importants et/ou prolongées (exemple : inflammations chroniques)
→ d'une détersion qui a été lente
→ d'un tissu à faible capacité de régénération (exemple : neurones, cellules musculaires myocardiques).
Image d'une cicatrice : dommage hépatique important, tissu blanc = tissu de comblage afin de maintenir
l'organe dans une forme « acceptable » mais entraine une perte de fonctionnalité.
30/35
a) Les étapes de la réparation tissulaire
Une fois la détersion achevée, il y a apparition d'un tissu de granulation (ou bourgeon charnu) = tissu
conjonctif qui va venir remplacer le tissu initial détruit et ainsi combler l'espace.
On va retrouver au sein de ce tissu de granulation les mêmes cellules que ceux du granulome inflammatoire
c'est à dire :
→ les leucocytes présents au sein du tissu de granulation (s'il s'agit d'un tissu resté principalement dans
une phase inflammatoire aigue, on aura essentiellement des PMN et s'il y a eu une évolution vers une phase
chronique, il y aura un enrichissement en monocytes/macrophages)
→ des fibroblastes et des myofibroblastes (= cellules de soutien)
→ des cellules endothéliales nécessaires à la revascularisation du tissu
Constituer ce tissu de substitution demande donc une coopération entre ces 3 différents types cellulaires. Le
tout est contrôlé par le système monocytes/macrophages qui va fournir les facteurs de stimulation, de
croissance qui vont coordonner la reconstruction du tissu.
La reconstitution du tissu est un mécanisme qui s'effectue toujours de la profondeur vers la surface de la
lésion.
1) Suite à un dommage de l'épiderme, il y a formation d'un caillot si des vaisseaux se sont rompus. Le
tissu de granulation se met en place au fond, à la base du tissu endommagé, sous le caillot.
Différents types cellulaires vont coopérer, via notamment tout un ensemble de facteurs, comme des
facteurs de croissance (TGF, FGF) qui vont orienter les autres cellules (fibroblastes,
myofibroblastes, cellules endothéliales) et les amener à se différencier pour reconstruire le tissu. Ils
vont dans un 1er temps venir résorber le caillot.
Donc première phase = fibrinolyse, c'est à dire destruction de la fibrine qui constitue le caillot sanguin
pour permettre aux cellules endothéliales, fibroblastes… d'infiltrer ce tissu et de pouvoir reconstruire les
vaisseaux sanguins. On aura donc cet aspect de bourgeon charnu (cf image ci-dessous) après que la croûte
ai été retirée. Le bourgeon charnu va permettre de reconstituer le tissu par comblage progressif.
31/35
2) Le tissu de granulation va progressivement remplacer le caillot ou l'espace libéré par le tissu initial
détruit et en même temps, se revasculariser. En comparaison avec la phase effective de
l'inflammation, cette phase de réparation tissulaire est très longue (plusieurs mois) mais passe
souvent inaperçue. La reconstitution du tissu peut se faire en périphérie ou en centrale si les
dommages sont très étendus.
3) Finalement, pour la peau, des cellules épithéliales vont recouvrir ce bourgeon charnu et refermer la
plaie.
Il peut y avoir des anomalies de la cicatrisation si tout ce mécanisme de coopération est dérégulé.
Par exemple, si trop de facteurs de croissance sont libérés, il y aura prolifération des fibroblastes et des
cellules endothéliales puis formation d'excroissances. Cela nécessite une intervention chirurgicale pour les
retirer.
32/35
b) La cicatrice : fibroblastes et myofibroblastes
Les fibroblastes ont un rôle important dans la cicatrisation. Ils vont être activé via les cellules monocytaires
et vont se mettre à produire des fibres de collagène puis elles vont se différencier en myofibroblastes et
ainsi acquérir des propriétés contractiles qui vont permettre de resserrer, refermer le tissu pour accélérer la
reconstitution et le comblage.
Lorsque le tissu est trop endommagé, il n'y aura pas de revascularisation possible. Il s'agira d'un tissu de
remplacement à base de collagène qui va venir combler l'espace vide.
Cicatrisation pathologique = fibrose (terme microscopique), sclérose (terme macroscopique)
33/35
Question élève : Différences entre réparation et cicatrisation ?
Réponse : Réparation = reconstitution du tissu à l'identique. C'est donc généralement une restitution sans
perte fonctionnelle.
Cicatrisation = s'il y a impossibilité de reconstituer le tissu à l'identique (par exemple, pour le muscle
cardiaque), l'espace ne va pas être laissé vide. Il sera comblé par des fibroblastes et des fibres de collagène
→ formation d'une cicatrice avec perte fonctionnelle.
c) La régénération
Étape finale après que le tissu se soit reconstitué et revascularisé et ait retrouvé ses fonctions initiales.
Elle se fait généralement superficiellement c'est à dire lorsque les dommages ne seront pas importants.
Elle se fait grâce aux cellules épithéliales qui vont venir recouvrir le bourgeon charnu, de la périphérie vers
le centre.
Différences entre régénération et réparation :
Lorsque le tissu a été réparé : on a éliminé l'agent qui posait problème, il y a eu détersion, on a comblé le
tissu. Mais il n'a pas encore été régénéré. La régénération, c'est vraiment retrouver l'aspect fonctionnel
initial.
Si le mécanisme de régénération n'est pas possible, les cellules souches épithéliales sont également
présentes au niveau des follicules pileux donc si ceux-ci sont intacts, les cellules souches vont pouvoir
migrer en surface et ainsi recoloniser la surface. La capacité de ces cellules à régénérer un tissu épithélial
est limitée, c’est pour cela que certains cas nécessiteront une greffe de peau, le but étant d’apporter des
follicules avec des cellules souches pour pouvoir régénérer le tissu le plus rapidement possible.
34/35
35/35
Téléchargement