Analyse harmonique sur les groupes et les espaces symétriques

R
L2(R)
f Cˆ
f
ˆ
f(x) = 1
2πZR
f(y)eixydy f(x) = 1
2πZR
eixy ˆ
f(y)dy
xeixy
d
dx
R R
C
1
SL(2,R)
G
(x, y)xy1ge G
G
G ϕg(x) = gxg1
Ad(g)End(g)ϕge G gad(X)
Ad e gEnd(g)g[X, Y ] =
ad(X)(Y) [ ,]
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [Y, X]] = 0
Sl(n, R)sl(n, R) = {X
M(n, R); trace(X) = 0}gSl(n, R)X, Y gAd(g)X=gXg1
[X, Y ] = XY Y X
g×gκ(X, Y ) = trace(ad(X)ad(Y)) G
gκg
X=G/H G
σ H G
σ H
g h G H σ σ
g=h+q q ={Xg;σ(X) = X}
gH Xqgσ(g)1
Xreg
XxΩ = H.x H
ν
ν
, m)ξΞ Θξ
HD(X)
GXFξCHXreg
D(X)
νH.x =ZΞ
Fξ(xξdm(ξ) ()
x=eX
f(eX) = RΞcξΘξ(f)dm(ξ)cξ
G=RΞ = R<Θξ, f > f
X=H=H×H/diagonale(H×H)
X=G/H G H G
D(X)
HheXq=ih
H=Sl(2,R)
Sl(2,R)
H=Sl(2,R)h=X=x1x2+x3
x2x3x1;xjR
h
t=Y(θ) = 0θ
θ0;θRa=X(t) = t0
0t;tR
HhH
hreg h
T=y(θ) = cos θ sin θ
sin θ cos θ ;θRA=a(t) = ε et0
0ε et;tRet ε =±1
hreg =Ad(H)areg Ad(H)treg Hreg =hH(hAregh1hTregh1)
exp H
h
a t
Hhreg X
hHa t
Xb b =a t H.X
h/b= [h, X]σH.X h/bσH.X ([Y, X],[Z, X]) = [X, [Y, Z]]
h/bβH.X =σH.X
2π
H.X
H.X(t) = {x1x2+x3
x2x3x1;x2
1+x2
2+x2
3=t2}βH.X(t)=dx2dx3
|x1|
H.Y (θ) = {x1x2+x3
x2x3x1;x2
1+x2
2+x2
3=θ2}βH.Y (θ)=dx1dx2
|x3|
f∈ D(h)C
fM({)(X) = πβH.X
H Chreg
breg b=t a
areg Ca
nNlim
θ0+(id
d θ )n(M(f))(Y(θ))+ lim
θ0(id
d θ )n(M(f))(Y(θ)) = lim
t0(d
d t)n(M(f))(X(t))
lim
θ0
d
d θ (sign(θ)M(f))(Y(θ)) = 2f(0)
I(h)
M D(h)I(h)
I(h)0I(h)Hh
r > 0
ZH.X
(1+ kξk2)rH.X (ξ)<
ˆ
βH.X
S(h)HHh
H X (X)(X)ϕ(Y) =
d
dt (ϕ(X+tY ))t=0
(p)ˆ
βH.X =p(iX)ˆ
βH.X
ˆ
βH.X
hreg
ˆ
βH.Y (λ)(Y(θ)) = eiλθ
2sign(λ)ˆ
βH.Y (λ)(X(t)) = e−||
|2t|sign(λ)
ˆ
βH.X(s)(Y(θ)) = 0 ˆ
βH.X(s)(X(t)) = eist +eist
|2t|
fh hreg =
Ad(H)areg Ad(H)treg
Zh
f(X)dX =ZR|2θ| M(f)(Y(θ))+1
2ZR|2t| M(f)(X(t))dt
M(f)(X) = 2πβH.X (f) = 2πˆ
βH.X (ˆ
ˇ
f)
=ZR|2θ|ˆ
βH.X (Y(θ)) ˆ
βH.Y (θ)(f)+1
2ZR|2t|ˆ
βH.X (X(t)) ˆ
βH.X(t)(f)dt
h
ˆ
βH.X (f)
|2t|ˆ
βH.X (X(t)) j(X)
X j(X(t))1/2=sinh t
tj(Y(θ))1/2=sin θ
θ
Θn(ε exp X) = ε1+nˆ
βH.Y (n)(X)j(X)1/2
Θ+
s(ε exp X) = ˆ
βH.X(s)(X)j(X)1/2Θ
s(ε exp X) = εˆ
βH.X(s)(X)j(X)1/2
ΘnΘ±
s
HD(H)
Θ±
0= lim
nO±Θn
f∈ D(H)Hreg
MH(f)(ε exp X) = j(X)1/2M(fexp)(X)H I1I5
Xbreg
b=a t nN
Fn(εexp X) = εˆ
βH.X (Y(n)|2n|F±
0= lim
n0±Fn
sRε=±1Fε,s(εexp X)) = X
Yb;exp Y =1
ˆ
βH.Y (X(s)) |2s|
F±,s =(F1,s ±F1,s)
FnF±
0F±H
H
D(H)
f∈ D(H)
MH(f)(x) = X
nZ;n6=0
Fn(xn(f)i+
O(f)Θ
O(f))+ 1
2Zs>0
(F+,s(x+
s(f)+F,s(x
s(f))ds
ϕ∈ D(H)
2πϕ(e) =
X
nZ;n6=0 |n|Θn(ϕ) + 1
2Zs>0
stanh(π s
2) Θ+
s(ϕ)ds +1
2Zs>0
scoth(π s
2) Θ
s(ϕ)ds
ΘnΘ±
sH
Hπ H
H(h, v)π(h)v
HH H
H π
π(ei)iIHϕ∈ D(H)
T r(π(ϕ)) = PiI< π(ϕ)ei, ei> H H
D(H)
ΘnΘ±
s
H
2×2
GC/GR
GC/GR
1 / 5 100%

Analyse harmonique sur les groupes et les espaces symétriques

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !