Département de recherche fondamentale
sur la matière condensée
Faits marquants du DRFMC
Dynamique des électrons de conduction d'un agrégat métallique
soumis à une perturbation électrique forte et brève
n° 387 - 15/04/96
On sait aujourd'hui fabriquer des particules métalliques de taille parfaitement contrôlée allant de quelques atomes
à plusieurs milliers d'atomes. Le nombre fini des électrons et leur confinement dans ces structures conduit à un
comportement quantique original avec notamment un spectre discret des niveaux d'énergie. Ceci n'est pas s'en
rappeler les électrons de l'atome ou les nucléons du noyau atomique. Des similitudes frappantes entre agrégats de
métaux alcalins et noyaux sont été effectivement observées.
Ainsi, comme la plupart des noyaux, la plupart des agrégats métalliques contenant jusqu'à quelques centaines
d'atomes présentent dans l'état de plus basse énergie une déformation dont l'origine essentiellement quantique
s'explique par la structure en couches des fermions dans leur champ moyen de confinement. Il est possible de
déposer ces systèmes à "zéro-dimension" métalliques (ou semi-conducteurs) sur un substrat ouvrant, dans le
domaine des nano-technologies, des alternatives aux boîtes quantiques ou autres fils quantiques. Il est également
possible de produire ces agrégats en phase gazeuse ce qui permet d'en étudier les propriétés intrinsèques
structurelles ou dynamiques en les perturbant avec des sondes appropriées.
Nous venons de mettre au point un modèle théorique permettant de décrire la dynamique des électrons de
conduction d'un agrégat métallique sur une échelle de temps de quelques dizaines de femtosecondes (fs), le temps
typique est donné par la fréquence plasma de l'ordre du dixième de fs, lorsque ce dernier est soumis à une
perturbation électrique brève mais de forte intensité. Dans le modèle actuel, cette perturbation est celle associée au
passage d'un ion dont la vitesse est de l'ordre de la vitesse de Fermi des électrons. Elle pourrait aussi être fournie
par le champ électrique d'un pulse intense laser de très courte durée. Quels sont dans ces conditions les modes et le
temps de relaxation du système électronique fortement excité? La dynamique d'un système fermionique peut être
en première approximation décrite dans le cadre d'une théorie de champ moyen. Au niveau quantique,
l'approximation de Hartree-Fock Dépendant du Temps (TDHF) est sûrement un outil approprié. Malheureusement la
résolution numérique des équations TDHF demeure une tâche gigantesque pour des systèmes finis de quelques
dizaines à quelques centaines de particules, tâche aujourd'hui inaccessible. Il est alors souhaitable d'examiner des
approximations supplémentaires.
Notre choix s'est porté sur l'approximation semi-classique à TDHF. On obtient alors une équation de champ moyen
qui décrit l'évolution temporelle de la densité à un corps d'espace de phase, f(r,p,t). Cette équation non linéaire,
[¶/¶t + pÑr + (ÑpV[f])Ñr - (ÑrV[f])Ñp]f(r,p,t)=0 (1)
est connue sous le nom d'équation de Vlasov. L'autocohérence apparaît dans l'équation par le terme de potentiel, qui
dépend de la densité d'espace de phase.
L'équation de Vlasov soulève des questions délicates de validité, et sa résolution numérique (dans un espace à 6
dimensions) est un véritable défi. La méthode que nous avons mise au point consiste à mettre la densité, f(r,p,t),
sous la forme d'une somme d'un grand nombre de fonctions localisées. Le problème revient alors à décrire la
dynamique de pseudo-particules qui se propagent dans l'espace de phase, et à résoudre un ensemble de M
paires d'équation de Hamilton. Le nombre, M, de pseudo-particules doit être beaucoup plus grand que le nombre
d'électrons, N. Le potentiel agissant sur ces pseudo-particules est la somme du potentiel électrostatique associé aux
lp_bleu1.g if (847 octets)