Le temps dans le système immunitaire

publicité
Le temps dans la
réponse immunitaire
M1 Immunologie
Cellule
dendritique
Lymphocytes
Le temps dans la
réponse immunitaire
Le temps dans le système
immunitaire
Quels sont les changements opérés dans
ce système dans l’ontogénie d’un
organisme ?
Visualisations de l’étude des changements du système
immunitaire en fonction de l’ontogénie
Ontogénie
1
Système immunitaire
Reproduction
2
Adulte
Stade mature
Oeuf
Adulte
Système immunitaire
X
Stade immature
Visualisations de l’étude des changements du système
immunitaire en fonction de l’ontogénie
Ontogénie
1
Système immunitaire
Reproduction
2
Adulte
Stade mature
Oeuf
Adulte
Système immunitaire
X
Stade immature
Visualisations de l’étude des changements du système
immunitaire en fonction de l’ontogénie
Ontogénie
1
Système immunitaire
Reproduction
2
Adulte
Stade mature
Oeuf
Adulte
Système immunitaire
X
Stade immature
Visualisations de l’étude des changements du système
immunitaire en fonction de l’ontogénie
Ontogénie
1
Système immunitaire
Reproduction
2
Adulte
Stade mature
Oeuf
Adulte
Système immunitaire
X
Stade immature
Identification des stades de l’ontogénie permettant de relater les
changements dans le système immunitaire
3
Ontogénie
Œuf
Maturité sexuelle
Stade immature
Stade mature
Maturité sexuelle
Système
immunitaire
Mort
?
Vieillissement ?
?
Identification des stades de l’ontogénie permettant de relater les
changements dans le système immunitaire
3
Ontogénie
Œuf
Maturité sexuelle
Stade immature
Stade mature
Maturité sexuelle
Système
immunitaire
Mort
?
Vieillissement ?
?
Différencier la réponse immunitaire des changements engendrés par
une rupture développementale dans le système immunitaire
Réponse immune
=
Changements dans le système
Activation/Migration cellulaire
Sécrétions cytokiniques
Inflammation
Coagulation
Mélanisation
≠
Détection d’un
épitope immunogène
Tolérance/
Élimination
État 1
État 2
Hormones
Système
immunitaire
Les ruptures de l’ontogénie...
Le comparatif des événements entre embryon et puberté
Similitudes
• Neurogenèse
• Formation des synapses
• Plasticité
• Myélinisation
• Différenciation des monocytes
du sac vitellin
• Acquisition de la microglie
• Restructuration de l’arbre
synaptique par croissance et mort
neuronale
La puberté et la système immunitaire
Puberté
Œuf
Maturité sexuelle
Stade immature
Stade mature
Quels changements?
Système
immunitaire
Le rôle de la microglie
London et al.
Macrophage heterogeneity within the CNS
Population cellulaire constituée de macrophages peuplant le système nerveux central.
factors associated with remyelination (h) and support regeneration (i).
FIGURE 1 | microglial and mo-MΦ functions – cascade of events.
Microglie etthat
macrophages,
la
cascade
des
événements.
Intensive
acute
or chronic
activation renders microglia neurotoxic; under such
(a) Resident microglia originate from yolk sac macrophages
repopulate
London
et al,Microglia
monocyte-derived
macrophages:
functionally
that act infail
concert
in CNS
plasticity and repair,
2013. Instead,
conditions microglia
to acquire
a neuroprotective
phenotype.
CNS
parenchyma
duringand
early
development and
are self-renewed
locally, distinct populations
these cells produce reactive oxygen species (ROS), nitric oxide (NO),
independent from bone marrow-derived monocytes, by proliferation of
proteases, and pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α, all of
primitive progenitors. (b) In the steady state microglia are constantly scanning
their environment through their highly motile processes. These
which endanger neuronal activity (j). Microglial malfunction results in the
cells facilitate the maintenance of synapses (c) and neurogenesis (d),
recruitment of mo-MΦ to the damage site (k). mo-MΦ secrete
92
M.K. Holder, J.D. Blaustein / Frontiers in Neuroendocrinology 35 (2014) 89–110
À la puberté
Fig. 2. Representation of the hypothalamus–pituitary–gonadal axis. Neurons in the preoptic area and mediobasal hypothalamus secrete gonadotropin-releasing hormone
Holder
et aBlaustein,
Puberty
adolescence
as aoftime
of vulnerability
stressors
that
alter
2013
(GnRH),
neurohormone,
into the and
hypophyseal
portal system
the median
eminence. The to
portal
blood carries
GnRH
into neurobehavrioal
the pituitary gland andprocesses,
activates its receptor,
gonadotropin-releasing hormone receptor (GnRHR) located on gonadotrope cells. Once activated, the GnRHR triggers synthesis and secretion of pituitary gonadotropins:
follicle stimulating hormone (FSH) and luteinizing hormone (LH). LH and FSH then act in concert to stimulate the production of gonadal steroid hormones (e.g., androgens
from the testes and estrogens and progestins from the ovary) and maturation of gametes (e.g., the spermatozoa in the testes and an ovum in the ovary). The gonadal
hormones act in the hypothalamus and pituitary to regulate gonadotropin secretion via feedback loops. Solid lines, positive feedback; dashed lines, negative feedback.
Puberté Maturité sexuelle
results in profound alterations in physiology and behavior as indithe brain: estrogen receptor (ER) a and b, also referred to as
Œuf
cated by (I) increases in anxiety and depression (Ge et al., 2001;
Patton and Viner, 2007); (II) risk-taking and novelty-seeking
behaviors (Arnett, 1996; Roberti, 2004; Wagner, 2001); (III) alterations in learning and cognition (Im-Bolter et al., 2013); and (IV)
drug and alcohol use and abuse (Bekman et al., 2010; Crawford
et al., 2003; MacPherson et al., 2010). In this review, we will confine ourselves to the ability of stressors in the pubertal and adolescent periods to alter the brain’s response to gonadal (Section 3) and
adrenal (Section 4) hormones.
Stade immature
3. Gonadal steroid hormones
3.1. Hypothalamic–pituitary–gonadal (HPG) axis
Augmentation
de la substance grise dans le lobe frontal
The hypothalamus and preoptic areas of the brain control much
of the neuroendocrine activity of vertebrates via regulation of hormone secretion. The secretion of the gonadal hormones, primarily
estrogens and progestins in females and androgens in males, is
controlled by the HPG axis (Fig. 2). The primary sources of gonadal
hormones are the ovaries in females and the testes in males. The
ESR1 and ESR2, respectively. High levels of ERa are present in
hypothalamic and limbic nuclei in the rat brain, including but
not limited to the anteroventral periventricular nucleus (AVPV),
medial preoptic area (mPOA), bed nucleus of the stria terminalis
(BNST), arcuate nucleus, paraventricular nucleus of the hypothalamus (PVN), ventromedial nucleus of the hypothalamus (VMN), and
medial amygdala (MeA) (Shughrue et al., 1996, 1997). The distribution of ERb is similar to ERa, but it is more highly expressed in the
mPOA, hippocampus, and cerebellum (Shughrue et al., 1996, 1997).
While no qualitative sex differences in the distribution of ERs in
particular brain regions have been reported, there are sex differences in the density of ERs (Rainbow et al., 1982). Compared to
male rats, female rats have higher concentrations of ERs in the
BNST peri-pubertally (Kuhnemann et al., 1994) and in the mPOA,
AVPV, and VMN pubertally and into adulthood (Brown et al.,
1988; Kuhnemann et al., 1994). Specifically, female rats have a
higher density of ERa in the VMN during pubertal development
(Yokosuka et al., 1997) and in adulthood (Yamada et al., 2009)
and more ERb in the lateral amygdaloid nucleus and the dentate
gyrus and CA3 region of the hippocampus in adulthood (Zhang
Stade mature
Diminution
de la substance grise dans le lobe frontal
Conclusions sur la puberté
Puberté
Œuf
Maturité sexuelle
Stade immature
Activation de la microglie
via les changements hormonaux
Stade mature
Restructuration des
substances grise et
blanche : changement
comportemental
Système
immunitaire
ACTIVATION DES MACROPHAGES
DE LA MICROGLIE
La grossesse
Grossesse et système immunitaire
Grossesse
Œuf
Stade immature
Stade mature
Quels changements?
Système
immunitaire
La grossesse : vers un état anti-inflammatoire
Grossesse
Œuf
Maturité sexuelle
Stade immature
Stade mature
Robinson and Klein
Page 20
Figure 1.
Balance
entrethe
les three
réponses
inflammatoires
et anti-inflammatoires
les troisoftrimestres
de la grossesse,
During
trimesters
of pregnancy,
there is a shift pendant
in the balance
proinflammatory
Robinson et Klein, Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis, 2012.
and anti-inflammatory responses. By the third trimester, anti-inflammatory responses,
La grossesse : vers un état anti-inflammatoire
Grossesse
P4
Œuf
Maturité sexuelle
Cytokines anti-inflammatoires
PIBF
PIBF
TCD4+
PIBF
TCD4+
PIBF
PIBF
PIBF
PIBF
PIBF
PIBF
PIBF
TCD4+
PIBF
PIBF
TH1
PIBF
PIBF
PIBF
TH2
L’induction de la tolérance
Interface fœto-maternelle
Th1
IL-10
Th2
Th1
hCG
IL4
Th1
Tregs
Blastocyste
Tr1
Tregs
Th2
Th2
Th1
Th2
Tregs
Th2
Th2
Th2
Th1
Th2
Th1
Th2
Th2
Th1
Inspiré de Gregori, HLA-G orchestrates the early interaction of human trophoblasts with the maternal niche, 2015
Schumacker et al, Human Chorionic Gonadotropin Attracts Regulatory T Cells into the Fetal-Maternal Interface during Early Human Pregnancy, 2009
Th2
Généralisations sur la grossesse et le système immunitaire de la
mère
Grossesse
Œuf
Maturité sexuelle
Les hormones sont détectées par
les récepteurs présents sur les
cellules immunitaires
Système
immunitaire
Développement de l’embryon
TOLERANCE
ÉTAT ANTI-INFLAMMATOIRE
La vieillesse
Le vieillissement dans l’ontogénie : indépendance ou non de la
maturité sexuelle ?
Œuf
1
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Œuf
Maturité sexuelle
Stade immature
2
?
Vieillissement
?
Stade mature
Vieillissement
Maturité sexuelle
Œuf
Stade immature
Stade mature
3
Vieillissement
?
Le vieillissement dans l’ontogénie : indépendance ou non de la
maturité sexuelle ?
Œuf
1
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Œuf
Maturité sexuelle
Stade immature
2
?
Vieillissement
?
Stade mature
Vieillissement
Maturité sexuelle
Œuf
Stade immature
Stade mature
3
Vieillissement
?
Le vieillissement dans l’ontogénie : indépendance ou non de la
maturité sexuelle ?
Œuf
1
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Œuf
Maturité sexuelle
Stade immature
2
?
Vieillissement
?
Stade mature
Vieillissement
Maturité sexuelle
Œuf
Stade immature
Stade mature
3
Vieillissement
?
Le vieillissement dans l’ontogénie : indépendance ou non de la
maturité sexuelle ?
Œuf
1
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Œuf
Maturité sexuelle
Stade immature
2
?
Vieillissement
?
Stade mature
Vieillissement
Maturité sexuelle
Œuf
Stade immature
Stade mature
3
Vieillissement
?
Le vieillissement et le système immunitaire
Œuf
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Vieillissement
?
Système
immunitaire
?
Les phénotypes de la vieillesse
Stade immature
Stade mature
Inflammation
M.R. Gubbels Bupp / Cellular Immunology 294 (2015) 102–110
107
Table 1
Summary of aging-related immune phenotypes experienced in males and females.
Immune phenotype
Innate
NK cell numbers
Monocytes
IL-6 production (LPS)
TNF-a production (LPS)
IP-10 production (IFN-c)
Serum concentrations of
C-reactive protein
IL-6
TNF-a
IL-10
Adaptive
B cell numbers
T cell numbers
Proliferative capacity
IL-2 production (anti-CD3 + antiCD28)
IFN-c production (anti-CD3 + antiCD28)
IFN-c production (IL-18 + IL-12)
IL-17 production (anti-CD3 + antiCD28)
CD8+ CD28" (TEMRA)
Inverted CD4/8 ratio
CD4+ overall
Mucosal associated invariant T cells
Sex-specific change with age
Species & age
Refs.
" In both, but more dramatic " in F
Humans ! 60 years old
[105]
No change in either M or F with age
No change in either M or F with age
; In both, but more dramatic ; in M
Healthy humans ! 65 years old
Healthy humans ! 65 years old
Healthy humans ! 65 years old
[108]
[108]
[108]
" In M,
study)
" In M,
study)
" In M,
study)
; In M,
" in F (M & F not compared in same
Humans ! 60 years old
[69,119]
" in F (M & F not compared in same
Males ! 60 years old; females postmenopause or
! 60 years old
Males ! 60 years old; females postmenopause or
! 60 years old
Humans ! 60 years old
[69,118,119]
Humans ! 66 years old
Humans ! 66 years old
Humans ! 66 years old
Healthy humans ! 65 years
Mice 15 & 23 months old
Healthy humans ! 65 years
Mice 23 months old
Healthy humans ! 65 years
Healthy humans ! 65 years
[105,107]
[105,107]
[105,107]
[108]
[13]
[108]
[13]
[108]
[108]
;
;
;
;
;
;
"
;
;
In
In
In
In
In
In
In
In
In
" in F (M & F not compared in same
no change in F
both, but more dramatic
both, but more dramatic
both, but more dramatic
both
both, but more dramatic
M but " in F
F, but no change in M
both, but more dramatic
M but no change in F
; in M
; in M
; in M
; in F
; in M
" In both, but more dramatic " in M
Both, but more prevalent in M
; In both, but more dramatic ; in M
; In both, but more dramatic ; in M
old
old
old
old
Healthy humans 20–90 years old
Humans ! 66 years old
Humans ! 66 years old
Humans ! 60 years old
Sommaire de phénotypes liés à l’age chez les femelles et les mâles (souris et humains)
Melanie and Gubbels Bupp_Sex, the aging immune system, and chronic disease,2015
express estrogen and androgen receptors as well as aromatase, the
enzyme that converts androgens to estrogens [45]. Estrogen signal-
References
[69,118,119]
[69]
[105]
[107]
[8,107]
[106]
L’inflamm-aging
Stade immature
Stade mature
Vieillissement
FRANCESCHI et al.: INFLAMM-AGING
Système
immunitaire
Franceshi, Inflamm-aging,
Inflammation
249
FIGURE 4. Inflamm-aging as a consequence of macroph-aging. The increase in proinflammatory status at an organismal level, caused by chronic age-related stimulation of the
macrophage,L’inflamm-aging
called “macroph-aging,”
is referred
to as “inflamm-aging.”
comme une
conséquence
du macroph-aging
enon is only part of the whole spectrum of change characteristic of immunosenescence, and indeed the macrophage is not the only cell involved in the aging process.
Lymphocytes are also largely affected during immunosenescence, and the continuous age-related,
inescapable, antigenic stress provokes a variety of changes
an evolutionary
perspective largely
on immunsenescence
even in the most evolutionary recent, clonotypical immune system. The results were
Les phénotypes de la vieillesse
Table 2. Circulating mtDNA plasma levels in donors of different age, that is, from children to the oldest old.
Group 1
log10 mtDNA (copies/mL)
Group 2
log10 mtDNA (copies/mL)
Group 3
log10 mtDNA (copies/mL)
Group 4 (sib1—proband)
log10 mtDNA (copies/mL)
Group 5 (sib2)
log10 mtDNA (copies/mL)
Sex
Males
Females
Mean (95% CI)
10.99 (10.88–11.09)
11.00 (10.88–11.11)
Mean (95% CI)
10.79 (10.66–10.93)
10.90 (10.78–11.03)
Mean (95% CI)
11.56a),b) (11.41–11.71)
11.36 a),b) (11.26–11.46)
Mean (95% CI)
11.57a),b) (11.43–11.71)
11.74 a),b),c) (11.65–11.82)
Mean (95% CI)
11.64a),b) (11.51–11.78)
11.67 a),b),c) (11.58–11.76)
Total
10.99 (10.92–11.07)
10.84 (10.75–10.93)
11.42 a),b) (11.33–11.50)
11.69 a),b),c) (11.62–11.76)
11.66 a),b),c) (11.59–11.74)
a)
www.eji-journal.eu
p < 0.001 versus group 1, ANOVA test with Bonferroni correction.
Pinti et al_Circulating
mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging, 2014
b)
p < 0.001 versus group 2, ANOVA test with Bonferroni correction.
c)
p < 0.001 versus group 3, ANOVA test with Bonferroni correction.
Stade immature
Stade mature
Vieillissement
Tregs
Système
immunitaire
Th17
T
Naïf
T Mémoire
TH1
TH2
Eur. J. Immunol. 2014. 44: 1552–1562
Groups
Généralisation du vieillissement et du système immunitaire
Œuf
Maturité sexuelle
Stade immature
Mort
Stade mature
Vieillissement
Vieillissement
Inflammation
Anti-inflammatoire
Système
immunitaire
Pro-inflammatoire
De la métamorphose...
Qu’est-ce que la métamorphose ?
Changement d’état (morphologique, physiologique et
comportemental) brutal entre l’avant et l’après.
1262 ROBERT AND OHTA
Robert-Ohta_Comparative and developmental study of the immune system in Xenopus,
Fig. 3. Schematic overview summarizing the major developmental steps of the Xenopus immune system. For abbreviations, see list.
Contrairement à la transformation, la métamorphose induit un
changement morphologique brutal.
1262 ROBERT AND OHTA
St 65
Fig. 3.
Schematic overview summarizing the major developmental steps of the Xenopus immune system. For abbreviations, see list.
(Hadji-Azimi et al., 1990). It is also 3.4. Differential Gene
clear that, at the molecular level, the Expression of MHC and
Ig repertoire in larvae and adults is Other Immune Genes
different (Mussmann et al., 1998); this
finding suggests that a new adult type MHC class I and class II genes are
B cell population differentiates at differentially regulated during metasome developmental time point (Chen morphosis. MHC class I molecules are
and Turpen, 1995). Tadpoles and first detected on erythrocytes and a
adults of the same clone were used to minor splenocyte population at the beSt
66 the antibody response to ginning of metamorphosis (Flajnik et
compare
al., 1986; 2006
Flajnik and Du Pasquier,
de Wallace Arthur_D'Arcy Thompson
and
the theory
of transformations,
DNP by
isoelectric
focusing.
Results
1988;
Rollins-Smith
et al., 1997a). Af3.3. B Cells and
showed that immunized larvae proter metamorphosis, however, class II
1980). Moreover, thymectomy performed at late premetamorphic developmental stage abrogates the ability
to induce larval allotolerance of skin
grafts (Barlow and Cohen, 1983). Although NK cells are detected from the
beginning of metamorphosis with the
mAb 1F8, significant NK killing activity in vitro can only be detected in
adults of approximately 1 year of age.
Inspiré
La
et le système immunitaire du xénope
1262métamorphose
ROBERT AND OHTA
Métamorphose
Œuf
Larve 50
Stade immature
Système
immunitaire
Maturité sexuelle
Stade mature
Quels changements?
Robert-Ohta_Comparative and developmental study of the immune system in Xenopus, 2009.
Fig. 3. Schematic overview summarizing the major developmental steps of the Xenopus immune system. For abbreviations, see list.
La métamorphose et le système immunitaire du xénope
1262 ROBERT AND OHTA
Spécificité
?
Réarrangements
des gènes VDJ
post 66 : • Expression de l’enzyme TDT
• Expression des molécules de classe Ib
• Tolérance des antigènes adultes et perte de
tolérance des antigènes larvaires
50 : Rate devient lymphoïdes
47 : Thymus devient un organe lymphoïde
Mémoire
Fig. 3.
Schematic overview summarizing the major developmental steps of the Xenopus immune system. For abbreviations, see list.
1980). Moreover, thymectomy performed at late premetamorphic devel-
(Hadji-Azimi et al., 1990). It is also
clear that, at the molecular level, the
Robert-Ohta_Comparative and developmental study of the immune system in Xenopus, 2009.
3.4. Differential Gene
Expression of MHC and
L’entrée en métamorphose chez les amphibiens : le rôle des
hormones permettant l’apoptose des lymphocytes
Métamorphose
Stade immature
Œuf
Larve 50
Stade mature
Maturité sexuelle
Corticoid binding in Xenopus (tadpoles and adults)
T3 T4
(pas d’effets inhibiteurs
de la proliferation)
Table 2. Concentrationof total corticosterone, bound fraction and unbound fraction in the plasma of
Corticosteroïdes
(apoptose des lymphocytes)
zone interrenale
Thyroïde
ACTH
Glande pituitaire
CRH
Hypothalamus
Xenopu~ heuis
tadpoles and adults (at 4°C)
Boundcorticosteronet
Total corticosterone*
ng.ml-’
c
ng.ml-’
*
,
Unbound corticosteronet
ng.ml-’
Lt
La
4.6 + 1.47
(4)
4.2
0.3
Beginning of
metamorphosis
st 54 to 58
14.2 + 1.44
(11)
12.6
Beginning of
climax
st 59 to 61
21.3 + 1.80
(11)
17.45
-
3.6
Middle of climax
st 62 to 63
45.8 + 3.96
(5)
22.5
-
23.1
End of climax
st 64 and 65
17.1 +3.11
(41
14.8
-
Adults
TSH
347
0.1
1.5
2.25
Meansare givenwith their standarderrors,in brackets, number of determinations.
Jolivet-Jaudet
et Leloup,
Corticosteroid
in plasma
of Xenopus
laevis.
*Concentrations
evaluated
in the present
study (adults) biding
or previously
[13] (tadpoles)
by radioimmunoassay
chloride extracts. during metamorphosis and growth, 1985.
Modifications
tCalculatcd in according to [25] and [26];
Lt: corticosterone bound to the high affinity component;
La: corticosterone bound to the low affinity component.
dexamethasone or RU 28 362 were effective in inhibiting the binding of [3H]corticosterone to Xenopus
plasma. That is quite unexpected, since in mammals,
testosterone binding to CBG is not very strong
whatever the considered species (4 to 100 times
less strongly than corticosterone) [28] and synthetic
on methylene
determined until now whether high levels of this
steroid exist in the plasma.
In the plasma of tadpoles, only one binding component was characterized. No significant difference
could be detected in the K. and in the electrophoretic
mobility in tadpoles, juveniles and adults concerning
L’entrée en métamorphose est hormono-dépendante.
Pro-metamorphosis
Metamorphosis
56/57
7 weeks
8 weeks
8 weeks
13 weeks
14 weeks
15 weeks
15 weeks
16 weeks
6 weeks
17 weeks
17 weeks
18 weeks
18 weeks
6 months
6 months
7 months
7 months
8 months
0 months
12 months
18 months
4 years
14/14
36/36
10,000I.P.
5,000 I.P.
5,000 I.P.
1.105 S.C.
5.105 S.C.
1.105 S.C.
1.105 I.P.
1.105 S.C.
1.105 I.P.
1.106 S.C.
1.106 I.P.
1.106 S.C.
1.106 I.P.
1.106 S.C.
5.106 S.C.
1.106 S.C.
2.5.106 S.C.
5.106 S.C.
2.106 S.C.
5.106 S.C.
5.106 S.C.
5.106 S.C.
100
100
100
100
80
92
71
60
L’entrée en métamorphose chez les amphibiens : le rôle des
hormones permettant l’apoptose des lymphocytes
51/58
58/59
65/66
Post-metamorphosis
Métamorphose
Stade immature
Œuf
Larve 50
46
20120
12/12
415
11/12
517
6/10
1/5
3/10
014
1/10
015
014
118
015
014
015
016
20
Stade mature
Maturité sexuelle
018
014
0110
Perte de 40 - 90% des lymphocytes
dans le thymus, le foie et la rate
66
30
0
10
0
0
12.5
0
0
0
0
0
0
0
Metamorphosis
o , ; ; . ,
- 107
-k
z
- 106
g
e
B
-+- MLR
..f
- 105
-V.Nb.thymocytesl
f
- 104
Système
immunitaire
Age
4w
st
4 . 5 ~7 w
8w
13w 14w
15w 1 6 w
17w
18w 6 m
7m
8m
IOm IZm 18m 4 y
50 s152 st 56 st 58 st66
TOLERANCE
out exception, 15/0 tumor cell lines 'derived from LG15
g
a
Fig. 1. Resistance of ff host
against transplantedff-2 during
development increased in parallel with thymus histogenesis
and mixed lymphocyte reaction
(MLR) recovery. Percentage
of animals (determined from the
data of Table 1) that developed
a tumor at the site of injection
within 1 month is given (intraperitoneal and subcutaneous
transplantation data from the
same developmental stage were
pooled). In brackets are the number of animals tested at each
developmental stage. The MLR
data are from [8] and the thymocyte number from [131
with 8 - 2 cells resisted tumor growth (Table 1) and were
still alive 1 year later. The same results were obtained
isogenic clones. This previously described observation
Robert, Gui, Du Pasquier_ Ontogeny of the
response
a transplanted
tumor
in Xenopus laevis,
1995
with progeny
of several $parents. Injection of more jf-2
[29]alloimmune
was rechecked,
andagainst
no tumor
growth was
detected
La métamorphose chez les ascidies
4742 B. Davidson and B. J. Swalla
A
B
Dorsal Nerve Cord
Notochord
Endostyle
Trunk Mesenchyme:
Trunk Lateral Cells
Mesenchyme
Trunk Ventral Cells
Endoderm
Rudiment
Cerebral Vesicle
(ocellus)
(otolith)
Papillae
C
D
H
E
F
G
I
i
ii
iv
iii
Fig. 1. Ascidian metamorphosis (Cloney, 1990; Hirano and Nishida, 1997; Satoh, 1994). (A) Pre-competent ascidian larvae, showing the chordat
dorsal nerve cord and notochord. The three cell lineages within the trunk mesenchyme form distinct mesodermal structures, as in B. (B) An adult
ascidian showing the chordate endostyle and pharyngeal slits. The trunk lateral cells form structures (colored in red) including the blood cells, pa
of the body wall musculature and the pharyngeal gill slit endothelia. The mesenchyme cells (colored green) migrate into the tunic. The trunk
ventral cells form structures (colored in blue) including the heart and parts of the body wall musculature. (C-D) Upon detection of the appropriate
settlement cue, competent larvae adhere to the substrate through adhesives secreted by the papillae. (E) The papillae retract, pulling the larval hea
against the substrate. (F) Over the next 20 minutes the tail is resorbed. (G) Within an hour, the outer larval tunic is molted. (H,I) Close up diagram
of the newly settled juvenile during the first few hours of metamorphosis. During this time (i) the cerebral vesicle is resorbed; (ii) the viscera rota
90 degrees; (iii) ampullae extend from the anterior epidermis, pushing the juvenile tunic along the substrate; and (iv) there is extensive migration
trunk mesenchyme cells both within the body, across the epidermis into the tunic and through a tube to the exterior.
La métamorphose de l’ascidie
Davidson et J. Swalla_A molecular analysis of ascidian
metamorphosis reveals activation of an innate immune response,2002
anterior papillary region (Fig. 5E, and see Fig. 6D). Although
the migration of cells across the epidermis has been previously
described, this had been characterized as occurring only after
settlement (Cloney and Grimm, 1970). The initial migration of
these cells into the tunic during the swimming larval period
4746 B. Davidson may
and B.have
J. Swalla
implications for the acquisition of larval
competence, as discussed below.
Careful observation of settling larvae has led to the detection
of a group of anterior most cells in the papillary region which
migrate through a tunnel in the juvenile tunic to the external
environment. Fig. 6 shows these cells at various stages during
this migration. We have also conducted time-lapse movies
clearly demonstrating this peculiar migration (Davidson et al.,
2001). The position and morphology of these cells indicates that
they are the same PAT cells identified by Eri et al. (Eri et al.,
1999) as having a key role in metamorphic signaling. Eri et al.
described these cells as being confined within a pocket of
juvenile tunic but did not note any migration out of the tunic.
DISCUSSION
Expression de gènes de l’immunité innéeAn ascidian
durant
laresponse
métamorphose
immune
during
Fig. 6. Observations of PAT cell migrations (anterior is downward).
(A) A competent larva viewed ventrally. Note extended papillae
(pap), two layers of tunic (lt, larval tunic; jt, juvenile tunic), rounded
blood cells (*) within the hemocoel (h). (B) 15 minutes after
induction of settlement with 50 mM KCl filtered sea water. Note
retraction of the papillae, an anterior cone of PAT cells has extended
into the tunic space (black arrowhead), the anterior region has
flattened and the tunic has begun to expand anteriorly. (C) 25
minutes after induction, note the anterior tunnel through the tunic
and the PAT cell clearly migrating through the tunnel (black
arrowhead). (D) 45 minutes after induction, the migrating PAT cell is
now outside of the juvenile tunic. Under natural conditions the larval
tunic is molted, leaving the migrating PAT completely exposed to the
external environment. Also note the continued migration of rounded
blood cells across the epidermis in the anterior (black arrowhead).
metamorphosis
Many of the genes that were isolated in our screens match
remodeling
is expressed
resorbing
those with gene
described
roles in in
thethe
innate
immune system and
cerebral
vesicle,
tail
and
muscle
granules
as two Selectins,
vertebrate inflammatory responses, including
well
in the
papillaryfactors,
region Hemocytin,
(Fig. 4D). InPentraxin, three
threeasvon
Willebrand
juveniles,
twofactors,
days aafter
settlement,
complement
trypsin-like
serine Bvprotease, and two
MASP expression is limited to faint staining
of the body wall epidermis (Fig. 3P). The
other four immune-related transcripts are
expressed strongly in the epidermis of the
ampullae as well as body wall epidermis.
(Fig. 3Q-T). At higher magnification of these
two-day juveniles, expression of Bv-Sccp2
(Fig. 4E) and Bv-Ccp3 (Fig. 4F) can be
discerned in both the epidermis and in nearby
blood cells. In contrast, expression of BvHspBP2 is not observed in the ampullae, and
displays a distinctive pattern concentrated
around the bases of the ampullae (Fig. 3W).
Cell migrations across the epidermis
during Boltenia metamorphosis
Innate immune-related proteins may play a
role in the adhesion and migration of blood
cells that occur during B. villosa
metamorphosis. We used propidium iodide
staining to analyze the timing of cell
migrations across the epidermis. As shown
in Fig. 5, propidium iodide staining
demonstrates that during the swimming larval
stage, prior to metamorphosis, cells have
already begun to migrate across the epidermis
into the juvenile tunic. This early migration is
Fig. 3. Expression patterns of isolated transcripts visualized through in situ hybridization.
evident when comparing the 2-hour larvae, in
Hybridation
in situ de transcripts
transcrits
lors
defourla métamorphose
ascidie
et tunic
résorption
Results for five immune-related
and oneexprimés
control transcript
over the
which there are d’une
no cells in
the juvenile
developmental stages included in our screens are displayed. Transcripts are identified to
(Fig. 5A), to the 15-hour larvae in which cells
tissus
larvaires
the left of each row of images displaying their expression pattern over
time. (A-E)
Preare visible in a regularly spaced pattern
competent larva, 1-2 hours after hatching. (F-U) Competent larvae, 10-12 hours after
closely apposed
to immune
the epidermis
et J.Swalla_A
ascidian
metamorphosis
of an innate
response,(Fig.
20025D).
hatching. For allDavidson
larval pictures
we havemolecular
chosen toanalysis
displayofonly
the head,
because thisreveals activation
Intriguingly, cells first migrate into the tunic
allows the details of expression to be discerned and there was no significant expression in
at 5-7 hours after hatching, corresponding to
the tail region for any of the genes examined. (K-V) Juveniles 1 hour after settlement.
des
Articulation entre la métamorphose et le système immunitaire
Métamorphose
Œuf
Larve 50
Stade immature
Perte d’un répertoire
Grande susceptibilité à l’apoptose et à
la phagocytose
Maturité sexuelle
Stade mature
Remodelage, réorganisation tissulaire
Spécificité accrue de reconnaissance
Système
immunitaire
TOLÉRANCE
Création d’un nouveau répertoire
Conclusion 1
• Plusieurs façons de voir le temps,
• Les ruptures dans l’ontogénie induisent des changements
hormono-dépendants dans le système immunitaire,
• Après les ruptures, le système immunitaire acquiert un
nouvel état,
• Les balances du système immunitaire varient en fonction
des ruptures (conclusion 2),
• Les changements induits par la rupture ne sont pas
pérennes (conclusion 2).
Conclusion 2
État 1
Hormones
Rupture
État 2
Favorise l’état 2
Tolérance
Pro-inflammatoire
Rejet
Anti-inflammatoire
Merci au
« See, Read »
Salvador Dali, La persistance de la mémoire
Video 10. Myeloid cells migrate preferentially towards the wound site after injury.
0.3 mm biopsy punch assay in the fin of a lurp:GFP transgenic Xenopus larva. The
movie reflects 9 h of cell migration starting 15 min after injury located at the
bottom of the movie. 5 confocal planes (Z-stack) were taken each 2 min, flattened
down and projected as a continuous time-lapse. A video clip is available online.
Supplementary material related to this article can be found online at http://dx.doi.
org/10.1016/j.ydbio.2015.03.008.
However, in the instance following a biopsy punch wound, a pvalue of 9.45e " 16 indicates a high confidence in the departure
from uniformity (rejection of the null hypothesis), which in this
particular case was in the direction of the wound located at 2701
(Fig. 5E and F). We confirmed that the average speed of migration
was significantly higher after wounding (Fig. 5G). The preferred
Fig. 6. Macrophage-like cells migrate preferentially towards the wound site after injury. (A) Schematic representation of a mpeg1:GFP transgenic Xenopus larva. (B) The
speed of migration was calculated for each GFP þ cell following light stimulation (unwounded, green dots) or after biopsy punch wounding (wounded, red dots). The mean
speed is indicated with a transversal black line. Mann–Whitney U-test, ***p o 0.001. (C) and (D) The magnitude and the angles of the displacement vectors obtained from the
GFP þ cell tracks after light stimulation were plotted in rose charts (MatLab). (E) and (F) The magnitude and the angles of the displacement vectors obtained from the GFP þ
cell tracks after biopsy punch wounding were plotted in rose charts (MatLab). The location of the wound site is denoted by a pink overshadow. Rayleigh test (CircStat for
Parades
et al_XenopusAnindicated.
in vivo model for imaging the inflammatory response following injury and bacterial infection, 2015
MatLab, The
MatWorks)
p-values are also
Les macrophages migrent préférentiellement vers le site de la blessure
Please cite this article as: Paredes, R., et al., Xenopus: An in vivo model for imaging the inflammatory response following injury and
bacterial infection. Dev. Biol. (2015), http://dx.doi.org/10.1016/j.ydbio.2015.03.008i
La grossesse et la tolérance, les cellules T régulatrices sont attirées
l’hCG
5494
Interface fœto-maternelle
hCG
Blastocyste
Tregs
Tregs
Tregs
FIGURE 8. Treg are not attracted by a non-hCG-producing cell line
(HaCat). The keratinocyte cell line HaCat did not produce hCG (A). In
Schumacher et al, Human chorionic gonadotropine attracts regulatory cells intro the fetal-maternal
contrast, JEG-3 cells produceinterface
significant
higher
levelspregnancy,
of hCG 2009.
(A). The
during
early human
two-chamber transwell system was used to determine the migration of Treg
La métamorphose chez les oursins
La réponse immune lors de la métamorphose, vers une
diminution de NOl’expression
signaux de stress ?
REPRESSES ECHINOIDdes
METAMORPHOSIS
398
397
C. D. BISHOP AND B. P.
2. SNAP
can suppress
after the Larvae
addition of
FigureFigure
4. Inhibitors
of HSP90
or sGCmetamorphosis
induce metamorphosis.
L-NAME.
wells (10
larvae/well)
were treated
with Eight
0.1% DMSO
(control),
5 !Mwere
RD, incubated
or 50 !M with
ODQ.L-NAME.
The
After
h, the frequencywas
of metamorphosis
approximately
0.5, then
frequency
of 4metamorphosis
monitored afterreached
3, 24, and
48 h. Asterisks
SNAP was
added to
of the wells.
frequency of of
metaindicate0.1a mM
significant
difference
in four
the frequency
of The
metamorphosis
7 and
24 h thereafter.
The (P
asterisk"indicates
larvae morphosis
treated withwas
RDscored
or ODQ
compared
to controls.
0.01; a
RD24
significant
between
timea points
in theincrease
frequency
of metamorPRD48 "
0.02; n difference
! 4). ODQ
caused
significant
within
3 h
phosis
among
larvae
treated
with
L-NAME (P0-7h ! 0.02; P7-24h ! 0.0005;
(PODQ3
" 0.0004;
n ! 4),
with no further
significant increase.
L’inhibition des NOs, de la guanyly cyclase
etndes
promeut
laindicates
métamorphose
$ 4).HSP90
The asterisk
in parentheses
a significant difference in the
frequency of metamorphosis between larvae treated with L-NAME and
Bishop et Randhorst_NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechnius pictus, 2001
L-NAME % SNAP after 24 h (P24 ! 0.03).
ge
low
thi
nu
sit
ser
me
thr
po
sec
im
sta
ap
co
ch
ing
sit
ex
reg
Re
ga
the frequency of metamorphosis over the untreated controls,
ser
and it did (Fig. 4). We have not measured directly whether
MFSW (Fig. 4). In another experiment, larvae were treated ce
137
Table 1. Variation in growth capacity of transplanted ff-2 tumor cells during development
Developmental
period
Pro-metamorphosis
Metamorphosis
Developmental
stage
Age
No. of cells and
route of injection
Tumor
incidence
50-5 1
52
56/57
4 weeks
4.5 weeks
7 weeks
8 weeks
8 weeks
13 weeks
14 weeks
15 weeks
15 weeks
16 weeks
6 weeks
17 weeks
17 weeks
18 weeks
18 weeks
6 months
6 months
7 months
7 months
8 months
0 months
12 months
18 months
4 years
5,000 I.P.
100,500, 1,000 I.P.
10,000I.P.
5,000 I.P.
5,000 I.P.
1.105 S.C.
5.105 S.C.
1.105 S.C.
1.105 I.P.
1.105 S.C.
1.105 I.P.
1.106 S.C.
1.106 I.P.
1.106 S.C.
1.106 I.P.
1.106 S.C.
5.106 S.C.
1.106 S.C.
2.5.106 S.C.
5.106 S.C.
2.106 S.C.
5.106 S.C.
5.106 S.C.
5.106 S.C.
23/23
3x 10/3x10
14/14
36/36
51/58
58/59
65/66
Post-metamorphosis
20120
12/12
415
11/12
517
6/10
1/5
3/10
014
1/10
015
014
118
015
014
015
016
018
014
0110
% of animals
developing tumor
100
100
100
100
100
100
80
92
71
60
20
30
0
10
0
0
12.5
0
0
0
0
0
0
0
Metamorphosis
o , ; ; . ,
Fig. 1. Resistance of ff host
- 107
against transplantedff-2 during
Robert, Gui, Du Pasquier_-k
Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis, 1995
z
- 106
g
e
development increased in parallel with thymus histogenesis
Téléchargement