DSCG : UE5 - Management des Systèmes d'Information
Séance 02 : recherche des termes de l'informatique décisionnelle
Orienté sujet
Au coeur du Data warehouse, les données sont organisées par thème. Les données propres à
un thème, les ventes par exemple, seront rapatriées des différentes bases OLTP de production
et regroupées.
Intégré
Les données proviennent de sources hétérogènes utilisant chacune un type de format. Elles
sont intégrées avant d'être proposées à utilisation
Non volatile
Les données ne disparaissent pas et ne changent pas au fil des traitements, au fil du temps
(Read-Only).
Historisé
Les données non volatiles sont aussi horodatées. On peut ainsi visualiser l'évolution dans le
temps d'une valeur donnée.
Le degré de détail de l'archivage est bien entendu relatif à la nature des données. Toutes les
données ne méritent pas d'être archivées.
7. Qu'appelle-t-on Big data?
Les big data, littéralement les grosses données, est une expression anglophone utilisée pour
désigner des ensembles de données qui deviennent tellement volumineux qu'ils en deviennent
difficiles à travailler avec des outils classiques de gestion de base de données ou de gestion de
l'information. L'on parle aussi de datamasse[4] en français par similitude avec la biomasse.
Le phénomène big data est considéré comme l'un des grands défis informatiques de la
décennie 2010-2020. Il engendre une dynamique importante tant par l'administration, que par
les spécialistes sur le terrain des technologies ou des usages[.]
Le Big Data couvre trois dimensions : volume, vélocité et variété :
Volume : les entreprises sont submergées de volumes de données croissants de tous types,
qui se comptent en téraoctets, voire en pétaoctets.
Vélocité : parfois, 2 minutes c'est trop. Pour les processus chronosensibles tels que la détection
de fraudes, le Big Data doit être utilisé au fil de l'eau, à mesure que les données sont collectées
par votre entreprise afin d'en tirer le maximum de valeur.
Variété : le Big Data se présente sous la forme de données structurées ou non structurées
(texte, données de capteurs, son, vidéo, données sur le parcours, fichiers journaux, etc.). De
nouvelles connaissances sont issues de l’analyse collective de ces données.
8. Qu'est ce que NoSQL?
NoSQL (Not only SQL en anglais) désigne une catégorie de systèmes de gestion de base de
données (SGBD) qui n'est plus fondée sur l'architecture classique des bases relationnelles.
L'unité logique n'y est plus la table, et les données ne sont en général pas manipulées avec
SQL.
En effet, NoSQL ne vient pas remplacer les BD relationnelles mais proposer une alternative ou
compléter les fonctionnalités des SGBDR pour donner des solutions plus intéressantes dans
certains contextes. Le premier besoin fondamental auquel répond NoSQL est la performance.
En effet, ces dernières années, les géants du Web comme Google et Amazon ont vu leurs
besoins en termes de charge et de volumétrie de données croître de façon exponentielle. Et
c’est pour répondre à ces besoins que ses solutions ont vu le jour. Ce théorème énonce que
tout système distribué peut répondre aux contraintes suivantes:
•Cohérence : tous les nœuds du système voient exactement les mêmes données au
même moment
•Haute disponibilité : en cas de panne, les données restent accessibles
•Tolérance au Partitionnement : le système peut être partitionné
Il est essentiel de garder à l’esprit que NoSQL apporte une réponse à des besoins bien
spécifiques. Il est nécessaire d’avoir identifier au préalable la nécessité d’utiliser cette
technologie avant de la mettre en place,
2/3 02-COURS-MSI_Reponse_questions_recherche