E=F+G ϕ F +
G E H (F+G)⊕H=E u H
F+G
F∩G= 0 ϕ F ⊕G E
x∈F∩G u1(x)6=u2(x) (u1, u2)
ϕ
dim(L(F, E)×L(G, E)) = dim(E)(dim(F)+dim(G)) H
Ker ϕ' L(H, E) dim Ker ϕ= dim(E)(dim(E)−dim(F+G)) ϕ
dim(E)(dim(F)+dim(G)−dim(F∩G))
P
x1+x2+x3=−2x1x2x3=−1P0
P=1
X−x1+1
X−x2+1
X−x3
1
x1+1
x2+1
x3=
P0(0)
P(0) = 1 1
2−x1+1
2−x2+1
2−x3=P0(2)
P(2) =21
19
u(vu −1) = 0 Im(vu −1) ⊂Ker(u)x∈E
x= (x−vu(x)) + (vu(x)) ∈Ker(u) + Im(v)vx ∈Ker(u)∩Im(v)
vuvx = 0 = vx Ker(u)∩Im(v)=0
v E1u|E1
Im u uv =πIm(u)vu =πE1
(∗)uv vu
v u E1
⇔
x∈E u(x) = u2(y)y
x−u(y)∈Ker u E = Ker u+ Im u x ∈Ker u∩Im u x =u(y) 0 = u(x) =
u2(y)y∈Ker u2= Ker u x = 0
x∈E x =x0+u(y)x0∈Ker u
u(x) = u2(y) Im u= Im u2u2(x)=0 u(x)∈Ker u∩Im u= 0
∧ ⇔
⇔X
k[X]
(Ker u= Ker u2)⇔(Ker u∩Im u= 0)
(Im u= Im u2)⇔(E= Ker u+ Im u)
(Ker u= Ker u2)⇔(Im u= Im u2)
A n x
(x, Ax)A x
(x, Ax)A
0∗ · · · ∗
1
0A0