L
|L(u)L(v)|=|L(uv)| ≤ CkuvkV.
{ϕk}V ϕ V
k→ ∞
|L(ϕk)L(ϕ)|=|L(ϕkϕ)| ≤ CkϕkϕkV0k→ ∞.
L L
vkV|L(vk)|/kvkkVk
wk=vk/(kkvkkV)V.
|L(wk)| ≥ 1
kwkkV= 1/k wk0,
L L(wk)0
L V
kLkV0:= sup
06=vV
|L(v)|
kvkV
.
k·kV0
V V
V0
f: [a, b]R
f0fL1
loc(a, b)f0
Tf0
hTf0, ϕi=Zb
a
f0(x)ϕ(x)dx, ϕ∈ D(a, b),
= [fϕ]b
aZb
a
f(x)ϕ0(x)dx
=Zb
a
f(x)ϕ0(x)dx =−hTf, ϕ0i.
T(n)n T
hT(n), ϕi:= (1)nhT, ϕ(n)i.
RNTα
¿|α|T
xα, ϕÀ= (1)|α|¿T, |α|ϕ
xα,Àϕ∈ D(Ω).
f: [a, b]R
hT0
f, ϕi=Zb
a
fϕ0dx =hTf0, ϕi,ϕ∈ D(Ω) T0
f=Tf0.
fL1
loc(Ω)
Tf
gL1
loc(Ω)
¿|α|Tf
xα, ϕÀ=Z
g(x)ϕ(x)dxϕ∈ D(Ω).
α f
α f g
g=Dαf
Dαf
N= 1 Ω = (1,1) f(x) = 1 − |x|
D1f
D1f
g(x) := ½1x < 0,
1x > 0,
hT0
f, ϕi=Z1
1
f(x)ϕ0(x)dx, ϕ∈ D(1,1)
[1,0] [0,1]
Z1
1
f(x)ϕ0(x)dx =Z0
1
f(x)ϕ0(x)dx Z1
0
f(x)ϕ0(x)dx,
=fϕ ¯¯0
1+Z0
1
1×ϕ(x)dx fϕ ¯¯1
0+Z1
0
(1) ×ϕ(x)dx,
=Z1
1
g(x)ϕ(x)dx f(0)ϕ(0) + f(0+)ϕ(0+),
=Z1
1
g(x)ϕ(x)dx =hTg, ϕi
hT00
f, ϕi= (1)2Z1
1
f(x)ϕ00(x)dx =Z0
1
ϕ0(x)dx + [fϕ0]0
1+Z1
0
ϕ0(x)dx + [fϕ]1
0,
=f(0)ϕ0(0)f(0+)ϕ0(0+) + ϕ(1) ϕ(0) [ϕ(0) ϕ(1)],
=2ϕ(0) = h−2δ0, ϕi,
T00
f2δ0
f x 6= 0
f
Lp
k f L1
loc(Ω)
Dαf|α| ≤ k
kfkWk
p(Ω) :=
X
|α|≤kkDαfkp
Lp(Ω)
1/p
,
1p < p=
kfkWk
(Ω) := max
|α|≤kkDαfkL(Ω).
Wk
p(Ω)
Wk
p(Ω) := nfLp(Ω) : kfkWk
p(Ω) <.o
Wk
2(Ω) = {vL2(Ω) : DαvL2(Ω) ∀|α| ≤ k.}
Wk
2(Ω) Hk(Ω)
H1(Ω) = nvL2(Ω) : v
xiL2(Ω), i = 1,2,3, . . . , No
v/∂xi
H1(Ω) H1
0(Ω) := {vH1(Ω) : v= 0 }
(·,·)1,H1(Ω)
(u, v)1,:= ZÃuv +
N
X
i=1
u
xi
v
xi!dx,
kuk1,= ((u, u)1,)1/2=ÃZÃu2+
N
X
i=1 µu
xi2!dx!1/2
.
fH1(Ω) f
L2(Ω) H1(Ω) L2(Ω)
Hm+1(Ω) Hm(Ω) . . . H1(Ω) L2(Ω).
fL2(Ω) A
ZA|f|dxµZA
f2dx1/2µZA
1dx1/2
= (volA)1/2kfk0,A <.
L2(Ω) L1
loc(Ω).
Ω = SN
i=1 i
iiTj=i6=j
uhUh
n UhH1(Ω)
uh
iuhH1(Ω)
1uh
uh
Z¡uh¢2dx=X
iZi³uh¯¯i´2dx<.
uh
gjL2(Ω)
Z
gjϕ dx=Z
uhϕ
xj
dx,ϕ∈ D(Ω).
gj
gj|i=uh
xj¯¯¯¯i
gjL2(Ω)
Z
g2
jdx=X
iZiÃuh
xj¯¯¯¯i!2
dx<.
Zi
gj|iϕ dx=Zi
uh
xj¯¯¯¯i
ϕ dx=Zi
uh¯¯iϕnij ds Zi
uh¯¯i
ϕ
xj
dx,
nij jnii
i
i
Z
gjϕ dx=
N
X
i=1 Zi
uh¯¯iϕnij ds Z
uhϕ
xj
dx.
Γik i,k
ZΓik
uh¯¯iϕnij +uh¯¯kϕnkj ds =ZΓik
uh¯¯iϕ(nij +nkj )ds = 0,
uhΓik uh
nij =nkj Γik
Zi
uh¯¯iϕnij ds,
iϕ= 0
Ω = (a, b)RH1(Ω)
H1(Ω) = ©u:uC0(Ω), D1(u)L2(Ω)ª.
Wk
p(Ω)
{vj} k·kWk
p(Ω)
Lp∀|α|< k {Dαvj}
k · kLp(Ω) vαLp(Ω)
Dαvjvαj→ ∞
Dαv∀|α|< k Dαv=vα
wjw Lp(Ω) ϕ∈ D(Ω)
Z
wj(x)ϕ(x)dxZ
w(x)ϕ(x)dx.
1/p + 1/q = 1
kwjϕwϕkL1(Ω) ≤ kwjwkLp(Ω)kϕkLq(Ω) 0j→ ∞
Dαv=vα
Z
vαϕ(x)dx= (1)|α|Z
v|α|ϕ
xα,ϕ∈ D(Ω).
Dαvj
Z
vαϕ dx= lim
j→∞ Z
Dαvjϕ dx,
= (1)|α|lim
j→∞ Z
vj
|α|ϕ
xαdx= (1)|α|Z
v|α|ϕ
xαdx.
Wk
2(Ω) = Hk(Ω)
H1
0(Ω)
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !