P
PR
RO
OB
BA
AB
BI
IL
LI
IT
TE
ES
S
Déterminer une probabilité à l'aide d'un tableau à double entrée
Déterminer une probabilité à l'aide d'un tableau à double entrée
page 1
Fiche originale réalisée par Thierry Loof
Un tableau à double entrée permet de déterminer des probabilités. Les intersections de lignes
et de colonnes autres que total sont les intersections des différents ensembles.
Exemple 1 :
Les 35 élèves d’une classe étudient une LV2 parmi Espagnol (E), Italien (I) ou Anglais
(A). Le nombre de filles (F) dans la classe est de 21. Un tiers d’entre elles étudient
l’anglais LV2 et deux étudient l’italien LV2.
Parmi les garçons (G), huit ont choisi espagnol LV2 et un seul, Italien.
1. Réaliser un tableau de la situation.
2. Dans la classe définie précédemment on choisi un élève. Déterminer :
a. La probabilité qu’il s’agisse d’une fille.
b. La probabilité que cet élève étudie l’espagnol LV2.
c. La probabilité que cet élève soit un garçon étudiant l’anglais LV2.
3. On choisi une fille. Quelle est la probabilité qu’elle étudie l’italien LV2. On notera FI cet
événement.
1. Un tiers des filles étudie l’anglais donc 1
3×21 = 7
On place les donnés (surlignées ici) dans le tableau
A
E
I
Total
G
5
8
1
14
F
7
12
2
21
Total
12
20
3
35
et on calcule par addition soustraction les valeurs manquantes.
2. Dans cette partie la population totale est de 35
a. Le nombre de filles est 21 donc P(F) = 21
35 = 0,6
b. Le nombre d’élèves qui étudient l’espagnol est 20, donc P(E) = 20
35 = 4
7
c. La probabilité cherchée est celle de G A. On regarde donc à l’intersection de la
ligne G et de la colonne A. On a donc P(G A) = 5
35 = 1
7
3. Ici la population totale est celle des filles donc 21. Les filles qui étudient l’italien sont 2,
donc la probabilité P(FI) = 2
21
Passer aux exercices
P
PR
RO
OB
BA
AB
BI
IL
LI
IT
TE
ES
S
Déterminer une probabilité à l'aide d'un tableau à double entrée
Déterminer une probabilité à l'aide d'un tableau à double entrée
page 2
Fiche originale réalisée par Thierry Loof
Exercice 1
Un club organise son grand repas actuel. Les participants peuvent choisir entre trois formules :
la formule complète, la formule sans boissons et la formule enfant. Il y a pour chaque formule
un tarif adhérent et un tarif non adhérent. Les réservations ont permis de compléter le tableau
suivant :
Formule
C
Formule
SB
Formule
E
Adhérent
12
26
16
Non
adhérent
23
11
22
Total
35
37
38
1. Une personne se présente à l’entrée, qui a réservé sa place. Quelle est la probabilité,
a. que ce soit un adhérent
b. Qu’elle ne soit pas adhérente et quelle ait choisi la formule sans boisson.
2. On prend au hasard un enfant, quelle est la probabilité qu’il soit adhérent au club.
Corrigé Revoir les explications du cours
Exercice 2
On a interrogé 14 500 élèves de classes de première (des séries L, ES, S, STT et STI), issus de
plusieurs lycées. On leur a demandé quelles étaient les trois fonctionnalités de leur calculatrice
qu'ils utilisaient le plus souvent. Tous sauf cinq élèves (qui n'avaient pas de calculatrice) ont
classé en tête les deux fonctionnalités suivantes : "Tracer des représentations graphiques de
fonctions " et "Etablir des tableaux de valeurs de fonctions ".
Mais leurs avis ont été partagés par rapport à la troisième fonctionnalité utilisée.
Voici la copie d'une feuille de calcul d'un tableur donnant les résultats de cette enquête.
Les nombres représentent un effectif d'élèves.
A
B
C
D
E
F
G
1
Troisième fonctionnalité utilisée : effectifs
2
CS
CF
M
J
P
Total
3
Série L
808
0
25
12
5
850
4
Série ES
2208
1
3048
430
3
5690
5
Série S
2118
86
3136
272
258
5870
6
Série STT
218
2
537
165
3
925
7
Série STI
14
12
853
234
47
1160
8
total
5366
101
7599
1113
316
14495
1. On choisi au hasard un élève parmi ceux qui ont répondu à cette enquête. Quelle est la
probabilité qu’il ait noté "stocker des résultats en mémoire" et qu’il soit première S ?
2. On choisi au hasard un élève parmi les élèves qui ont répondu de la série ES, quelle est
la probabilité qu’il ait noté "faire des calculs statistiques" ?
Corrigé Revoir les explications du cours
Les codes utilisés signifient :
CS : "Faire des calculs
statistiques"
CF : "Faire du calcul formel"
M : "Stocker des résultats en
mémoire"
J : "Jouer"
P : "Programmer"
P
PR
RO
OB
BA
AB
BI
IL
LI
IT
TE
ES
S
Déterminer une probabilité à l'aide d'un tableau à double entrée
Déterminer une probabilité à l'aide d'un tableau à double entrée
page 3
Fiche originale réalisée par Thierry Loof
Corrigé 1
Un club organise son grand repas actuel. Les participants peuvent choisir entre trois formules :
la formule complète, la formule sans boissons et la formule enfant. Il y a pour chaque formule
un tarif adhérent et un tarif non adhérent. Les réservations ont permis de compléter le tableau
suivant :
Formule
C
Formule
SB
Formule
E
Adhérent
12
26
16
Non
adhérent
23
11
22
Total
35
37
38
1. Une personne se présente à l’entrée, qui a réservé sa place. Quelle est la probabilité,
a. que ce soit un adhérent
b. Qu’elle ne soit pas adhérente et quelle ait choisi la formule sans boisson.
2. On prend au hasard un enfant, quelle est la probabilité qu’il soit adhérent au club.
1. La population totale est de 110.
a. Il y a 54 adhérents donc la probabilité est de 54/110
b. Il y a 11 non adhérents qui ont choisi la formule sans boisson donc la probabilité
est de 11/110
2. La population totale des enfants est de 38. Les enfants adhérents sont 16, donc la
probabilité est de 16/38.
Retour aux exercices Revoir les explications du cours
P
PR
RO
OB
BA
AB
BI
IL
LI
IT
TE
ES
S
Déterminer une probabilité à l'aide d'un tableau à double entrée
Déterminer une probabilité à l'aide d'un tableau à double entrée
page 4
Fiche originale réalisée par Thierry Loof
Corrigé 2
On a interrogé 14 500 élèves de classes de première (des séries L, ES, S, STT et STI), issus de
plusieurs lycées. On leur a demandé quelles étaient les trois fonctionnalités de leur calculatrice
qu'ils utilisaient le plus souvent. Tous sauf cinq élèves (qui n'avaient pas de calculatrice) ont
classé en tête les deux fonctionnalités suivantes : "Tracer des représentations graphiques de
fonctions " et "Etablir des tableaux de valeurs de fonctions ".
Mais leurs avis ont été partagés par rapport à la troisième fonctionnalité utilisée.
Voici la copie d'une feuille de calcul d'un tableur donnant les résultats de cette enquête.
Les nombres représentent un effectif d'élèves.
A
B
C
D
E
F
G
1
Troisième fonctionnalité utilisée : effectifs
2
CS
CF
M
J
P
Total
3
Série L
808
0
25
12
5
850
4
Série ES
2208
1
3048
430
3
5690
5
Série S
2118
86
3136
272
258
5870
6
Série STT
218
2
537
165
3
925
7
Série STI
14
12
853
234
47
1160
8
total
5366
101
7599
1113
316
14495
1. On choisi au hasard un élève parmi ceux qui ont répondu à cette enquête. Quelle est la
probabilité qu’il ait noté "stocker des résultats en mémoire" et qu’il soit première S ?
La probabilité demandée ici est celle de M S. Il y a 3136 élèves qui correspondent à ce profil
et 14495 élèves qui ont répondus à cette enquête, donc : P(M S) = 3136
14495
2. On choisi au hasard un élève parmi les élèves qui ont pondu de la série ES, quelle est
la probabilité qu’il ait noté "faire des calculs statistiques" ?
Il y a 5690 élèves de ES qui ont répondu dont 2208 élèves qui ont notés "faire des calculs
statistiques", donc la probabilité recherchée est de 2208
5690
Retour aux exercices Revoir les explications du cours
Les codes utilisés signifient :
CS : "Faire des calculs
statistiques"
CF : "Faire du calcul formel"
M : "Stocker des résultats en
mémoire"
J : "Jouer"
P : "Programmer"
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !