r2 card (E).
S(E)r r r
σ= (x1, x2,···, xr)τ,
τ◦σ◦τ−1= (τ(x1), τ (x2),··· , τ (xr))
S(E),
σ σ′r τ
σ′=τ◦σ◦τ−1.
σ′′ = (τ(x1), τ (x2),··· , τ (xr)) , τ ◦σ=
σ′′ ◦τ.
x∈E\{x1,··· , xr}, σ (x) = x τ (x)∈E\{τ(x1),··· , τ (xr)},
τ◦σ(x) = τ(x) = σ′′ (τ(x)) = σ′′ ◦τ(x)
x xk,
τ◦σ(x) = τ(σ(xk)) = τ(xk+1)
xr+1 =x1
σ′′ ◦τ(x) = σ′′ (τ(xk)) = τ(xk+1)
τ◦σ=σ′′ ◦τ, τ ◦σ◦τ−1=σ′′.
σ= (x1, x2,··· , xr)σ′= (x′
1, x′
2,··· , x′
r)r
φ E \ {x1,··· , xr}E\ {x′
1,··· , x′
r}, τ E
τ(xk) = x′
kk= 1,··· , r τ (x) = φ(x)x∈E\ {x1,···, xr}
τ◦σ◦τ−1= (τ(x1), τ (x2),···, τ (xr)) = (x′
1, x′
2,··· , x′
r) = σ′
r2 card (E),
S(E)r
S(E)r
rAr
n
r= (r−1)!Cr
n.
Z(S(E)) S(E),
S(E)S(E).
Z(S(E)) = S(E) card (E) = 2
{IdE}card (E)≥3
card (E) = 2,S(E)Z(S(E)) = S(E).
card (E)≥3σ Z (S(E)) . x ̸=y E,
(σ(x), σ (y)) = σ(x, y)σ−1= (x, y)σσ−1= (x, y)
σ{x, y}={x, y}.card (E)≥3, x ∈E
y̸=z x {x}={x, y}∩{x, z},
{σ(x)}=σ({x}) = σ({x, y} ∩ {x, z})
=σ({x, y})∩σ({x, z}) = {x, y} ∩ {x, z}={x}
σ(x) = x. σ =IdE.
S(E){Id}.
S(E)n≥3.