exp ]0,+∞[ 0 < ex−P0(x)x > 0
t∈[0, x]et≤ex[0, x]ex−P0(x)≤xex
(H0)
(Hn) (Hn+1)hn(x) = ex−Pn(x)x
hn+1 R+h0
n+1 =hn(Hn)h0
n+1(t)>0t > 0hn+1
hn+1(x)> hn+1(0) x > 0hn+1(x)>0
(Hn) exp
∀t∈]0, x[, h0
n+1(t)≤tn+1
(n+ 1)!et≤tn+1
(n+ 1)!ex
hn+1(x)−hn+1(0) ≤xn+2
(n+ 2)!ex
(Hn+1)
(H0)n(Hn) (Hn+1) (Hn)n
f[a, b] [a, b] [a, b] ]a, b[
k∈[0,1[ x∈]a, b[|f0(x)| ≤ k
f[a, b]
un+1 =f(un)
u0∈[a, b].
g[a, b]g(x) = f(x)−x g
[a, b]g(a)≥0g(b)≤0l∈[a, b]g(l)=0
f(l) = l
l l0f l < l0
f[l, l0]|f(l)−f(l0)| ≤ k|l−l0|(1 −k)|l−l0| ≤ 0
1−k > 0l=l0
u0∈[a, b]f[a, b]⊂[a, b]
[a, b]unl
|un+1 −l|=|f(un)−f(l)| ≤ k|un−l|
|un−l| ≤ kn|u0−l|.
k∈[0,1[ limn→+∞kn= 0 (un)nl
√2
un+1 =un
2+1
un
u0= 1
f(x) = x
2+1
x[1,2]
f f