f g
[a, b] ]a, b[t]a, b[f0(t)g0(t)
f(b)f(a)g(b)g(a).
h=gf[a, b] ]a, b[
c]a, b[h(b)h(a)=(ba)h0(c)h0(c)0
h(b)h(a)0f(b)f(a)g(b)g(a)
f[a, b] ]a, b[
α β t ]a, b[αf0(t)β
α(ba)f(b)f(a)β(ba).
f g [a, b] ]a, b[t
]a, b[|f0(t)| ≤ g0(t)
|f(b)f(a)| ≤ g(b)g(a).
f[a, b] ]a, b[M
t]a, b[|f0(t)| ≤ M
|f(b)f(a)| ≤ M(ba).
g g(t) = βt
f
|f(b)f(a)| ≤ g(b)g(a)g(b) + g(a)f(b)f(a)g(b)g(a)
ff
α=M β =M g(t) = Mt
f[a, b] ]a, b[f0
]a, b[f m = inf]a,b[f0
M= sup]a,b[f0f
y=f(a) + M(xa)y=f(b) + M(xb)y=f(a) + m(xa)y=f(b) + m(xb)
401
[400,401] 1
2401 401 400 1
2400 (20.025)2>401
20 + 100
4005 401 20 + 100
4000
cos
x > 0
1cos x1⇒ −xsin xx⇒ −x2
21cos xx2
2. . .
f]a, b[
f]a, b[f0]a, b[
f]a, b[f0]a, b[
f]a, b[f0]a, b[
x0]a, b[f]a, b[x]x0, b[f(x)f(x0)
xx00x x0
f0(x0)0f]a, b[
t]a, b[f0(t)0x<y ]a, b[
f(y)f(x)0f]a, b[
f[a, b] ]a, b[ lim
xa+f0(x) = l f0
d(a)
f a l
ε > 0hε:a<x<a+hεlεf0(x)l+ε.
f[a, x]
lεf(x)f(a)
xal+ε
ε > 0hε:a<x<a+hε
f(x)f(a)
xal
ε
lim
xa+
f(x)f(a)
xa=l=f0
d(a)
a f
]a, b[
lim
xa+f0(x) = +∞ −∞ a+
−∞ fRf(x) = x2sin( 1
x2) 0 f(0) = 0
Rf0(0) = lim
x0
f(x)
x= 0 x6= 0 f0(x) = 2xsin( 1
x)cos( 1
x)x
0
I x0I f I
I\ {x0}lim
xx0
f0(x) = l f0x0f0(x0) = l
fCn[a, b]f(n+1) ]a, b[M
t]a, b[|f(n+1)(t)| ≤ M
f(b)f(a)
n
X
k=1
(ba)k
k!f(k)(a)
(ba)n+1
(n+ 1)! M.
h
h(t) = f(t)f(a) +
n
X
k=1
(bt)k
k!f(k)(t).
x > 0n
0< ex
n
X
k=0
xk
k!xn+1
(n+ 1)!ex.
eR\Q
e=p
qp q
nq
0< n!(p
q
n
X
k=0
1
k!)e
n+ 1
n n max(2, q)
Pn(x) = Pn
k=0
xk
k!
(Hn) : x > 0,0< exPn(x)xn+1
(n+ 1)!ex
exp ]0,+[ 0 < exP0(x)x > 0
t[0, x]etex[0, x]exP0(x)xex
(H0)
(Hn) (Hn+1)hn(x) = exPn(x)x
hn+1 R+h0
n+1 =hn(Hn)h0
n+1(t)>0t > 0hn+1
hn+1(x)> hn+1(0) x > 0hn+1(x)>0
(Hn) exp
t]0, x[, h0
n+1(t)tn+1
(n+ 1)!ettn+1
(n+ 1)!ex
hn+1(x)hn+1(0) xn+2
(n+ 2)!ex
(Hn+1)
(H0)n(Hn) (Hn+1) (Hn)n
f[a, b] [a, b] [a, b] ]a, b[
k[0,1[ x]a, b[|f0(x)| ≤ k
f[a, b]
un+1 =f(un)
u0[a, b].
g[a, b]g(x) = f(x)x g
[a, b]g(a)0g(b)0l[a, b]g(l)=0
f(l) = l
l l0f l < l0
f[l, l0]|f(l)f(l0)| ≤ k|ll0|(1 k)|ll0| ≤ 0
1k > 0l=l0
u0[a, b]f[a, b][a, b]
[a, b]unl
|un+1 l|=|f(un)f(l)| ≤ k|unl|
|unl| ≤ kn|u0l|.
k[0,1[ limn+kn= 0 (un)nl
2
un+1 =un
2+1
un
u0= 1
f(x) = x
2+1
x[1,2]
f f
f
l
k= 1 f(x) = x
f: [1,+[R+limx+f(x) = 0 R+
1f(x)dx
+
P
n=1
f(n)
f x 7→ Rx
1f(t)dt f
t[n, n + 1] f(n+ 1) f(t)f(n) [n, n + 1]
f(n+ 1) Zn+1
n
f(t)dt f(n)
f(1) +
N
X
n=1
f(n)ZN
1
f(t)dt ≤ −f(N) +
N
X
n=1
f(n)
f
+
P
n=1
f(n)
lim
N+
+N
P
n=1
f(n)=+R+
1f(x)dx lim
N+RN
1f(x)dx = +
(un)nn1un=
2n
P
p=n+1
1
p
l= ln 2
f(t) = eit f(0) = 1 = f(2π)f0(t) = ieit [0,2π]
f g [a, b] ]a, b[f g
t]a, b[|f0(t)| ≤ g0(t).
|f(b)f(a)| ≤ g(b)g(a)
h[a, b]h(x) = Ref(x)f(a)·f(b)f(a)h
[a, b] ]a, b[
h0(x) = Ref0(x)·f(b)f(a)|h0(x)| ≤ g0(x)|f(b)f(a)|x]a, b[
h g |h(b)h(a)| ≤ (g(b)g(a))|f(b)f(a)|
|f(b)f(a)|2(g(b)g(a))|f(b)f(a)|f(b)f(a) = 0
|f(b)f(a)|
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !