
Nous écrirons sous forme algébrique
amoy =∆v
∆t
Exemple : Un corps passe de 20 m ·s−1à36 km ·h−1en 10 s. Quelle est la valeur de son accélération ?
36 km ·h−1= 10 m ·s−1. Ainsi, a= (10 −20)/10 = −1 m ·s−2.
L’accélération est négative. Cela signifie ici que l’objet est en décélération. Sa vitesse diminue.
Accélération instantanée
De la même manière que pour la vitesse instantanée, on peut définir l’accélération instantanée par
a= lim
∆t→0
∆v
∆t
La vitesse instantanée est donc la dérivée de la position par rapport au temps :
a=dv
dt
mouvement uniformément accéléré
Un mouvement dont l’accélération est constante est apellé mouvement uniformément accéléré.
Applications directes du cours, exercice
Je vous propose trois applications de cours et trois exercices pour appliquer ces notions de cinématique. Les
capacités mises en œuvre ne figurent pas au programme de BTS. Les capactités travaillées n’apparaissent donc
pas sur vos grilles.
Application directe de cours 3000
On a enregistré les différentes positions
d’un solide :
L’intervalle de temps entre deux positions successives est de 20 ms. L’origine du repère coïncide avec le premier
point M0 de l’enregistrement. L’échelle est de 1/1.
1. Déterminer la valeur de la vitesse à l’instant t= 40 ms
2. Déterminer la valeur de la vitesse à l’instant t= 100 ms.
3. Représenter les deux vecteurs vitesse correspondant à une échelle que vous préciserez.
4. Comment peut-on qualifier une telle trajectoire ?
5. Que peut-on dire de la nature du mouvement du solide?
6. Que peut-on dire de l’accélération du solide ?
5