pgcd(f, g −ω)gB
ωFpp
p p
f g −ω gp−g
gp−g=g(gp−1
2−1)(gp−1
2+ 1)
p6= 2 ¯g∈ B f gp−g
f= pgcd(f, gp−g) = pgcd(f, g) pgcd(f, g p−1
2−1) pgcd(f, g p−1
2+ 1).
¯g6= 0 g1:= pgcd(f, g)6= 1 g1f
g1f/g1g1= 1 g2:= pgcd(f, g p−1
2−1) = f
gp−1
2−1≡0 mod (fi)∀i= 1, . . . , s
g2= 1 g3:= pgcd(f, g p−1
2+ 1) = f
gp−1
2+ 1 ≡0 mod (fi)∀i= 1, . . . , s.
g2∈ {1, f}
p6= 2
S+:= {z∈F∗
p, z p−1
2−1=0}et S−:= {z∈F∗
p, z p−1
2+ 1 = 0}
(p−1)/2F∗
p
0 = zp−1−1 = (zp−1
2−1)(zp−1
2+ 1) ∀z∈F∗
p.
pF∗
p=S+∪S−
Card(S+) + Card(S−) = Card(F∗
p) = p−1.
x(p−1)/2−1x(p−1)/2+1 Fp[x] (p−1)/2
Card(S+)≤p−1
2et Card(S−)≤p−1
2.
¯g∈ B gmod (fi)∈Fp⊂Fp[x]/(fi)i∈F∗
p
¯g∈ B B Fp
gmod (fi)∈FpFp1/p i = 1, . . . , s
gmod (fi)6= 0 g(p−1)/2−1 = 0 mod fi
g(p−1)/2+ 1 = 0 mod fi1/2