Un modèle de champ de phase pour l’ébullition
P. Ruyera, D. Jametb, L. Truskinovskyc
a : Institut de Radioprotection et de Sûreté Nucléaire
b : Commissariat à l’énergie atomique, didier[email protected]
c : Ecole Polytechnique
21 décembre 2006
La connaissance des mécanismes de base de l’ébullition nucléée, notamment à fort flux de chaleur pariétal, est à ce jour
insusante pour expliquer l’occurence de phénomènes comme la crise d’ébullition. Afin de parfaire cette connaissance, la
simulation numérique apparait comme un outil d’investigation locale prometteur en complément à l’expérimentation. En
vue de réaliser des simulations numériques de la dynamique de croissance de bulle, on présente le développement, l’analyse
et les premières résolutions numériques des équations d’un modèle de type champ de phase pour les écoulements liquide-
vapeur avec changement de phase. Ce modèle permet en particulier de se passer d’un traitement numérique spécifique
de l’interface, tout en reproduisant les principaux mécanismes physiques de la transition de phase liquide-vapeur. Cette
présentation reprend les principaux résultats des travaux de thèse [2] réalisés au CEA Grenoble sous la direction scientifique
de Lev Truskinovsky du LMS de l’école Polytechnique.
Régularisation de type champ de phase Le problème majeur de la simulation d’un écoulement bouillant réside dans
la gestion numérique de l’interface en tant que surface libre. Face à cette diculté, les modèles à interfaces diuses,
inspirés de la théorie de la capillarité de van der Waals, proposent une régularisation thermodynamiquement cohérente de
la formulation discontinue. Les équations de la dynamique des fluides en résultant sont valables en tout point de l’espace et
peuvent ainsi être résolues à l’aide de schémas classiques. En contre partie, il est nécessaire de modéliser et de résoudre la
dynamique du fluide au sein de l’interface. En vue d’une étude numérique macroscopique et quantitative, il est important de
maîtriser les caractéristiques de cette zone régularisée (notamment l’épaisseur de l’interface) et d’étudier les conséquences
de la régularisation sur la modélisation de la transition de phase. Ainsi on peut montrer qu’il n’est pas possible d’utiliser
le modèle de van der Waals comme base d’une méthode numérique pour l’étude macroscopique de l’ébullition, le modèle
étant trop contraint. La modélisation de type champ de phase se base sur l’introduction d’un paramètre d’ordre abstrait pour
la transition de phase considérée. Ce paramètre se compare formellement à la fonction indicatrice de phase utilisée dans
les méthodes numériques traitant les interfaces comme des surfaces de discontinuité. Son introduction en tant que variable
thermodynamique permet à la fois de lever le type de contraintes observé avec le modèle de van der Waals et d’apporter une
cohérence thermodynamique à une régularisation artificielle. Nous étudions comment adapter cette modélisation à l’étude
de l’ébullition.
Modélisation des états d’équilibre monophasique et diphasique Nous présentons (cf. [1]) une fermeture thermody-
namique dont la propriété principale est de minimiser l’interférence entre la description de la zone interfaciale, dont les
caractéristiques doivent pouvoir être choisies selon des critères numériques, et la description des domaines monophasiques,
dont les propriétés sont supposées données. Cette fermeture comprend
les équations d’état des phases exprimées à partir des variables thermodynamiques classiques
l’ensemble des éléments d’un modèle à interfaces diuses (non convexité de l’énergie, dépendance en termes non-
locaux) et de champ de phase (fonction d’interpolation entre les équations d’état).
La spécificité de la formulation retenue réside dans le choix des non linéarités des fonctions de la variable champ de phase.
L’étude du modèle dans des configurations académiques montre le rôle essentiel de ces non linéarités.
L’équilibre du fluide est caractérisé par une équation supplémentaire comparément à une description thermodynamique
classique, ce qui illustre le degré de liberté supplémentaire de la formulation de champ de phase par rapport au modèle
de van der Waals. L’étude des conditions de stabilité des états monophasiques permet d’établir la relation entre le choix
des non linéarités et le fait que deux valeurs et deux seulement de la variable champ de phase soient associées à des états
d’équilibre homogènes stables. Concrètement cette propriété permet que les seuls états monophasiques possibles soient
les phases liquide et vapeur et de maîtriser ainsi les masses volumiques des phases, la chaleur latente ainsi que la limite
de métastabilité, tous étant des paramètres physiques essentiels de l’ébullition. L’équilibre diphasique plan est gouverné
par une équation diérentielle indépendante de toute grandeur thermodynamique issue de la description des phases, cette
propriété découlant des choix faits pour la fermeture. Ainsi l’épaisseur caractéristique et la tension interfaciale sont des
paramètres libres du modèle. Cette dernière joue un rôle physique significatif en présence de courbure ce qui motive l’étude
1
de l’équilibre sous symétrie sphérique. Dans ce cas nous montrons que le modèle est tout à la fois cohérent avec la théorie
de Laplace et capable de reproduire nucléation et collapse d’inclusions.
Le choix de la fermeture des termes de champ de phase s’avère donc crucial pour obtenir les bonnes propriétés du fluide
et de l’interface diuse.
Modélisation de la transition de phase Nous nous intéressons désormais à la dynamique du fluide. Nous choisissons une
fermeture simple des mécanismes dissipatifs. Outre les dissipations classiques de type conductivité de Fourier et viscosité de
Newton, nous considérons une relaxation de Ginzburg-Landau vers la relation d’équilibre de champ de phase. L’écriture des
équations du mouvement retenue permet d’identifier clairement la régularisation champ de phase des termes interfaciaux.
Dans les modèles à interfaces diuses, la relation cinétique, qui relie la force motrice de la transition au taux de pro-
duction d’entropie interfaciale, est intrinsèque, contrairement aux modèles discontinus pour lesquels la relation cinétique
s’impose extérieurement. Nous présentons une étude analytique permettant de déterminer celle de notre modèle champ de
phase. Les équations du mouvement sont ainsi résolues pour une onde progressive stationnaire plane non visqueuse, et ce de
manière approchée à l’aide de la méthode des développement asymptotiques raccordés. Nous montrons ainsi que la solution
champ de phase est cohérente avec les relations de saut classiques en vitesse, pression et énergie. Les termes dominants
de la relation cinétique du modèle champ de phase sont associés à la relaxation de Ginzburg Landau, les variations de la
conductivité au sein de l’interface induisent une dissipation secondaire. Nous analysons la relation cinétique obtenue en la
comparant par rapport au modèle classique de la théorie de la croissance normale.
On montre ainsi comment la modélisation de champ de phase des phénomènes dissipatifs définit la relation cinétique
du modèle à interface discontinu équivalent de la transition.
Résolution numérique du modèle Nous avons développé un algorithme de résolution basé sur la méthode de projection.
Nous montrons comment cet algorithme permet de résoudre à la fois des phénomènes de changement de phase stationnaire
et instationnaires et des écoulements isothermes gouvernés par la capillarité et la gravité. En ce qui concerne la résolution de
la transition de phase liquide-vapeur anisotherme en deux dimensions, nous observons une diculté à prendre en compte
le couplage entre tenseur capillaire et transfert thermique lors du calcul du déplacement de l’interface ce qui génère des
instabilités numériques du type courant parasite. Cette diculté a été analysée comme étant associée à la formulation
particulière de la méthode de projection et montre ainsi les limites de cette méthode pour notre application.
Références
[1] D. Jamet and P. Ruyer. A quasi-compressible model dedicated to the direct numerical simulation of liquid-vapor flows
with phase-change. In 5th international conference on multiphase flow, Yokohama, Japan, number 169, June 2004.
[2] P. Ruyer. Modèle de champ de phase pour l’étude de l’ébullition. Thèse de doctorat, Ecole Polytechnique, 2006.
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !