Nom : Ali BOUFERROUM
Dirigé par : Djalil Chaf
Septembre, 2011
Projet de recherche :Vecteurs propres de matrices aléatoires,
Convergence de fluctuations.
La théorie des matrices aléatoires s’est beaucoup développée durant les vingt dernières
années dans de nombreux champs des mathématiques et de la physique, en connexion in-
téressante avec la combinatoire, la théorie des nombres, La fonction zêta de Riemann, les
surfaces aléatoires, le chaos quantique et plusieurs d’autres applications en mathématiques
pures.
Le but de ce projet est d’étudier le comportement asymptotique de certaines fluctua-
tions de vecteurs propres pour des matrices aléatoires universelles. L’étude sur les vecteurs
propres a fait l’objet d’un intérêt croissant dans les trois dernières années, Erdös,Schlein
et Yau ont prouvé en 2009 une propriété de délocalisation pour les vecteurs propres de
matrices de Wigner. Et très récemment, Tao et Vu ont montré que si les quatre premiers
moments des distributions atomes d’une matrice de Wigner coïncident avec ceux d’un
GUE ou GOE, Les éléments [ui,j ]n
i,j=1 de la matrice des vecteurs propres dans la décom-
position spectrale peuvent être approchés par des variables gaussiennes indépendantes, si
on ne considère qu’un nombre fini de ces éléments.
Pour une matrice de Wigner Xndont la décomposition spectrale est donnée par
Xn=UnDnUT
n, on considère le processus càdlàg bivarié défini par :
Bn
s,t =
sβ
2X
1i≤bnsc
1j≤bntc
|Ui,j |21
n
s,t[0,1]2
,
β= 1 dans le cas réel, et β= 2 dans le cas complexe.
Dans le cas gaussien GUE/GOE, il est bien connu que la matrice unitaire Upeut être
choisie pour être distribuée selon la mesure de Haar sur le groupe unitaire/orthogonal, et
un résultat très récent de Donati-Martin et Rouault affirme que le processus précé-
dent converge vers le pont brownien bivarié pour la topologie de Skorokhod dans D([0,1]2).
Chafa conjecturé que ce phénomène de convergence de fluctuations est universel
pour des matrices de Wigner plus générales, et de plus, il est valable pour d’autres décom-
positions matricielles que la décomposition spectrale (décomposition en valeurs singulières
pour des matrices pas nécessairement carrées, décomposition de Householder pour des
matrices pas nécessairement symétriques), tant que ses premiers moments coïncident avec
ceux d’un GUE/GOE.
Cette conjecture est prouvée très récemment par George-Benaych dans le cas d’une
matrice de Wigner avec une décomposition spectrale, tant que les douze premiers moments
de la loi atome hors diagonale, et les dix premiers moments de la loi atome diagonale de
Xncoïncident avec ceux d’un GUE/GOE et avec une hypothèse de continuité absolue de
ces lois atomes par rapport à la mesure de Lebesgue.
Notre travail consiste à montrer la conjecture pour les autres décompositions ma-
tricielles et de trouver des conditions de convergence plus optimales.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !