E
x, y E
|⟨x|y⟩| ≤ ∥xy
x y
Rn
(x, y)Rn×Rn,
n
k=1
xkyk
2
n
k=1
x2
kn
k=1
y2
k
n1x1,··· , xn.
n
k=1
xk2
n
n
k=1
x2
k
a b,
φ: (x, y)7→ a
n
i=1
xiyi+b
1i̸=jn
xiyjRn, n 2.
n
k=1
xk·12
n
k=1
12n
k=1
x2
k=n
n
k=1
x2
k
xk
φ x Rn,
q(x) = φ(x, x) = a
n
i=1
x2
i+ 2b
1i<jn
xixj
=a
n
i=1
x2
i+b
n
i=1
xi2
n
i=1
x2
i
= (ab)
n
i=1
x2
i+bn
i=1
xi2
φ a =q(e1)>0, a b=q(e1e2)>0
qn
i=1
ei=n(a+ (n1) b)>0.
a > 0, a b > 0a+ (n1) b > 0, x Rn\ {0}
q(x) = (ab)
n
i=1
x2
i+bn
i=1
xi2
>(ab)1
nn
i=1
xi2
+bn
i=1
xi2
=1
n(a+ (n1) b)n
i=1
xi2
0
q(x)>0. x Rn\ {0}λ̸= 0,
q(x) = qλ
n
i=1
ei=2(a+ (n1) b)>0
φ
n1,
n
k=1
kkn(n+ 1)
232n+ 1
n
k=1
kk
n
k=1
k2
n
k=1
k
n
k=1
k=n(n+ 1)
2
n
k=1
k2=n(n+ 1) (2n+ 1)
6,
n
k=1
kkn2(n+ 1)2(2n+ 1)
12 =n(n+ 1)
232n+ 1
n1x1,··· , xn
n
k=1
xkn
k=1
1
xkn2
n
k=1
1
k26n
(n+ 1) (2n+ 1)
n=
n
k=1
xk
1
xk
n
k=1
xk
n
k=1
1
xk
λxk=λ1
xk
k1n, xk=λ k 1n, λ
xk=k2k1n,
n
k=1
k2n
k=1
1
k2n2
n
k=1
k2=n(n+ 1) (2n+ 1)
6,
n
k=1
1
k26n
(n+ 1) (2n+ 1).
a, b λ,
(2λ1) a22λab =λ(ab)2λb2+ (λ1) a2
q E =Rn
q(x) =
n
k=1
(2k1) x2
k2
n1
k=1
kxkxk+1
q
q.
(x, y) = (x1,··· , xn, y1,··· , yn)H=R2nQ
H
Q(x, y) =
n
k=1 y2
k2xkyk.
Q
Q.
n1x= (x1,··· , xn)Rn, y = (y1,··· , yn)
yk=1
k
k
j=1
xj.
x1=y1
k∈ {2,··· , n}, xk=kyk(k1) yk1
Q(x, y) = q(y).
n
k=1
y2
k
n
k=1
2xkyk.
n
k=1
y2
k4
n
k=1
x2
k.
(xn)n1x2
n
(yn)n1yn=1
n
n
j=1
xj
n1,y2
n
+
n=1
y2
n4
+
n=1
x2
n.
(2λ1) a22λab =λa22ab+ (λ1) a2
=λ(ab)2b2+ (λ1) a2
=λ(ab)2λb2+ (λ1) a2
q(x) = (2n1) x2
n+
n1
k=1 (2k1) x2
k2kxkxk+1
= (2n1) x2
n+
n1
k=1
k(xkxk+1)2
n1
k=1
kx2
k+1 +
n1
k=1
(k1) x2
k
= (2n1) x2
n+
n1
k=1
k(xkxk+1)2+
n2
k=1
kx2
k+1
n1
k=1
kx2
k+1
= (2n1) x2
n+
n1
k=1
k(xkxk+1)2(n1) x2
n
=
n1
k=1
k(xkxk+1)2+nx2
n.
q(x) =
n
k=1
k2
k(x)
k
k(x) = xkxk+1 (1 kn1)
n(x) = xn
rg (q) = n, ker (q) = {0}sgn (q) = (n, 0) .
Q(x, y) =
n
k=1
(ykxk)2
n
k=1
x2
k
Q(x, y) =
n
k=1
L2
k(x, y)
2n
k=n+1
L2
k(x, y)
Lk
Lk(x, y) = ykxk(1 kn)
Lk(x, y) = xk(n+ 1 k2n)
rg (Q) = 2n, ker (Q) = {0}sgn (Q) = (n, n).
x1=y1k2, kyk=
k
j=1
xj,
xk=kyk(k1) yk1.
1 / 26 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !