L2(]a, b[) −∞ < a < b <
L2(]a, b[)
δ0
L2(R)
L2(R)
L2(R)
L2(R)
tR
f:tRf(t)Rf:tRf(t)C
f(t) = α0cos(2πν0t+θ0) = α0cos(2π
Tt+θ0) = α0cos(ω0t+θ0),
α0, ν0, ω0, T R
L2(]a, b[) −∞ < a < b <
ν0T=1
ν0
ω0= 2πν0θ0
|α0|
cos(a+b) = cos acos bsin asin b
f(t) = β0cos(2πν0t) + γ0sin(2πν0t),
β0=α0cos θ0γ0=α0sin θ0
f(t) = α0cos(2πν0(t+t0)) t0=θ0
2πν0g(t) = f(tt0)
g(t) = α0cos(2πν0t) = α0cos(2π
Tt) = α0cos(ω0t).
f(t) = α0ei(2πν0t+θ0)=α0ei(2π
Tt+θ0)=α0ei(ω0t+θ0),
<(f)(t) = α0cos(ω0t+θ0)
f
L2(]a, b[) −∞ <a<b<
L2(]a, b[)
zCz|z|=zz
z=a+ib a, b Rz=aib |z|=a2+b2
f:RC|f|:RRf:RC
f2:RC
|f|(x) = |f(x)|, f(x) = f(x), f2(x) = (f(x))2.
sin2(x) = (sin(x))2
−∞ ≤ a < b ≤ ∞
L2(]a, b[; C) = {f: ]a, b[CZb
a|f(t)|2dt < ∞} =L2(]a, b[)
T=ba f :]a, b[R
||f||L2(]a,b[) =³Zb
a|f(t)|2dt´1
2=||f||L2,
]a, b[
teiαt αRL2(]a, b[) ||e·||2
L2=Rb
a1dt =
ba < L2(R)
L2(]a, b[) (·,·)L2:L2(]a, b[) ×
L2(]a, b[) R
(f, g)L2=Zb
a
f(t)g(t)dt
||f||L2=p(f, f )L2=³Zb
a|f(t)|2dt´1
2.
(L2(]a, b[),(·,·)L2)
L2(]a, b[) RC
(·,·)L2
L2(]a, b[) −∞ < a < b <
eik2πν0·teik2πν0t
a, b Ra < b T =ba ν0=1
Tω0=ν0
2π
(eik2πν0·)kZ(= (eik2π·
T)kZ= (eikω0·)kZ)
(L2(]a, b[),(·,·)L2)
1
T(eik2πν0·)kZ(= ( 1
Teik2π·
T)kZ=1
T(eikω0·)kZ)
L2(]a, b[)
(eikω·, ei`ω·)L2=Zb
a
ei(k`)ωt dt =(ba=T k =`,
0k6=`.
T
R
eik2πν0teik2πν0·:tReik2πν0t
eik2πν0t
t
(eik2πν0t)kZ
(eik2πν0·)kZ
fL2(]a, b[)
ckCkZf
t]a, b[
f(t) = X
kZ
ckeik2πν0t(= X
kZ
ckeik2πt
T=X
kZ
ckeikω0t).
f
ck=1
T(f, eik2πν0·)L2(]a,b[) =1
TZb
a
f(t)eik2πν0tdt,
||f||2
L2=TX
kZ
c2
k.
(1
Teik2πt
T)kZL2(]a, b[)
(f(t), ei`2πν0t)L2=X
k
ck(eik2πν0t, ei`2πν0t)L2=X
k
ckT δk` =c`T,
||f||2
L2= (f, f)L2=Pk` ckc`(eik2πν0t, ei`2πν0t)L2=Pk` ckc`δk`T
L2(]a, b[) −∞ < a < b <
tRS(f) : [a, b]R
S(f)(t) = X
kZ
ckeik2πν0t
f t
fL2(]a, b[) S(f)
S(f) = f .
f:]0,2π[Rf(t) = 0 t]0, π[f(t) = 1 t]π, 2π[
f(π) = 36 1 Sf (π) = 1
2
ν1=ν0
νk=kν k 2
(ck, νk)kZf
L2
f t0g
(g(t0)6=f(t0),
g(t) = f(t)t6=t0,)ck(f) = ck(g)f g
S(f) = S(g)f6=g
||f||2
L2=||g||2
L2f g
f L2(]a, b[) S(f)(t)
f(t)t f g f
S(f) = f f
f: [a, b]C
f(t) : [a, b]Rf(t)Rt
Sf (t) = Pkcke2ikπν0tSf =f
Sf (t)RSf(t) = Sf(t)
Sf (t) = Pkcke2ikπν0t=Pkcke+2ikπν0t=Sf(t)f
ck=ck
kZc0R
k > 0 : ak=ck+ckR
k > 0 : bk=i(ckck)iR
a0=c0,
k > 0 : ck=ak
2ibk
2
k > 0 : ck=ak
2+ibk
2
c0=a0,
e= cos θ+isin θ
Sf (t) = a0+
X
k=1
akcos(2kπν0t) +
X
k=1
bksin(2kπν0t),
f
L2(R)
δ0
δ0L2
L2
δ0
δ0
]π, π[
δ0=1
2πX
kZ
eikx,
δ0
ck=1
2πk
PN(x) = 1
2π
N
X
k=N
eikx
δ0N
PNL2(] π, π[) PNR]π, π[
PNPN
PNck=1
2πk|k|< N ck= 0
k|k|> N
PN(x) = 1
2π(1 + 2 cos(x) + ... + 2 cos(Nx)) PN
cos(kx) 2π
k6= 0
Zπ
π
Pn(x)dx =1
2πZπ
π
1dx = 1,
PN
2πPN(x) = eiNx P2N
k=0(eix)kx6= 0
2πPN(x) = eiNx 1(eix)2N+1
1eix =ei(N+1
2)xei(N+1
2)x
ei1
2xei1
2x=sin(N+1
2)x
sin 1
2x,
n x
0 2πPN(0) = 2N+1 PNPN(0) → ∞ N→ ∞
(PN)nNRπ
πPN(x)f(x)dx f(0)
[π, π]
δ0
L2(R)
t=−∞ +
R
L2(R)
L2(R) = {f:RCZ
−∞ |f(t)|2dt < ∞}
f:RR
L2(R) (·,·)L2:L2(R)×L2(R)C
(f, g)L2=ZR
f(t)g(t)dt
1 / 20 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !