L2(]a, b[) −∞ < a < b < ∞
ν0T=1
ν0
ω0= 2πν0θ0
|α0|
cos(a+b) = cos acos b−sin asin b
f(t) = β0cos(2πν0t) + γ0sin(2πν0t),
β0=α0cos θ0γ0=α0sin θ0
f(t) = α0cos(2πν0(t+t0)) t0=θ0
2πν0g(t) = f(t−t0)
g(t) = α0cos(2πν0t) = α0cos(2π
Tt) = α0cos(ω0t).
f(t) = α0ei(2πν0t+θ0)=α0ei(2π
Tt+θ0)=α0ei(ω0t+θ0),
<(f)(t) = α0cos(ω0t+θ0)
f
L2(]a, b[) −∞ <a<b<∞
L2(]a, b[)
z∈Cz|z|=√zz
z=a+ib a, b ∈Rz=a−ib |z|=√a2+b2
f:R→C|f|:R→Rf:R→C
f2:R→C
|f|(x) = |f(x)|, f(x) = f(x), f2(x) = (f(x))2.
sin2(x) = (sin(x))2
−∞ ≤ a < b ≤ ∞
L2(]a, b[; C) = {f: ]a, b[→CZb
a|f(t)|2dt < ∞} =L2(]a, b[)
T=b−a f :]a, b[→R
||f||L2(]a,b[) =³Zb
a|f(t)|2dt´1
2=||f||L2,
]a, b[
t→eiαt α∈RL2(]a, b[) ||eiα·||2
L2=Rb
a1dt =
b−a < ∞L2(R)
L2(]a, b[) (·,·)L2:L2(]a, b[) ×
L2(]a, b[) →R
(f, g)L2=Zb
a
f(t)g(t)dt
||f||L2=p(f, f )L2=³Zb
a|f(t)|2dt´1
2.
(L2(]a, b[),(·,·)L2)
L2(]a, b[) R→C
(·,·)L2