A(ai)×(bi)A
×1A+
A k kNk
(ai) (bi)A(ci)=(ai)×(bi)
A ar= 0 r > d bs= 0 s > e arbs6= 0 r6d
s6e r +s6d+e i > d +e(r, s)
r+s=i arbs= 0 ci= 0 (ci)×
A
i((ai)×(bi)) ×(ci)
(ai)×((bi)×(ci))
X
r+s+t=i
arbsct.
×ci=Parbs(ai) (bi)
1A(δi,0)
1A×+
ci=Parbs(ai) (bi) (bi) (ai)
A×
A
k
X aX2+bX +c
(0,1,0,0, . . . )
X(0,1,0,0, . . . )Xk= (0,...,0,1,0, . . . )
k>1k Xk= (ai)ai=δi,k
P= (ai)ai= 0 i > n P =anXn+an−1Xn−1+· · ·+a1X+a0
a0a01A
k k = 1
Xk= (δi,k)i>0i Xk+1 =Xk×X δr,kδs,1
r, s r +s=i r =k s = 1
Xk+1 i=r+s=k+ 1 1
k+ 1
aiXi
aii
X k[X]
X k k
k[X]λ=λ1k[X]
aiXi
P=anXn+an−1Xn−1+· · · +a1X+a0X
P6= 0 Pdeg(P)i ai6= 0
P= 0 deg(P) = −∞