UNIVERSITE MOHAMMED V RABAT
FACULTE DES SCIENCES JURIDIQUES
ECONOMIQUES ET SOCIALES
AGDAL
ﺲﻣﺎﺨﻟا ﺪﻤﺤﻣ ﺔﻌﻣﺎﺟ طﺎﺑﺮﻟا
ﺔﯾدﺎﺼﺘﻗﻻاو ﺔﯿﻧﻮﻧﺎﻘﻟا مﻮﻠﻌﻟا ﺔﯿﻠ
لاﺪﻛا ﺔﯿﻋﺎﻤﺘﺟﻻاو
DEPARTEMENT DE SCIENCES ECONOMIQUES
Licence fondamentale en Sciences Economiques et Gestion
EXERCICES DE PROBABILITES
Professeur : Adil EL MARHOUM
ANNEE UNIVERSITAIRE 2014/2015
Exercices de probabilités
Adil EL MARHOUM Page 2
EXERCICES : ANALYSE COMBINATOIRE
EXERCICE 1
Sur une étagère d'un meuble, de combien de façons différentes peut-on placer sur une même
rangée six vers de couleurs différentes ?
EXERCICE 2
Dans un jeu de loto on doit choisir une combinaison de 6 nombres différents parmi 24
nombres différents. Combien de combinaisons peut-on former si :
a) l'ordre n'est pas important ?
b) l'ordre est important ?
EXERCICE 3
Combien de nombres de 4 chiffres peut-on former avec les 10 chiffres 0, 1, 2, …, 9 si :
a) les chiffres peuvent se répéter ;
b) les chiffres peuvent se répéter et le nombre est divisible par 5 ;
c) les chiffres ne peuvent se répéter et le nombre est divisible par 2 ;
d) les chiffres ne peuvent se répéter et le nombre est pair ;
e) les chiffres ne peuvent se répéter et le nombre ne contient que des chiffres impairs.
EXERCICE 4
Quatre hommes et trois femmes se présentent à un guichet bancaire.
a) il y a combien de façon de servir ces personnes abstraction faite de leur sexe ?
b) il y a combien de façon de servir ces personnes si les femmes doivent être servies en
premier ?
c) il y a combien de façon de servir ces personnes si les hommes et les femmes sont servis
alternativement ?
EXERCICE 5
Avec un alphabet de 26 lettres, combien peut-on écrire de mots différents de 7 lettres, une
lettre ne pouvant figurer qu'une fois dans le même mot ?
EXERCICE 6
Un championnat sportif groupe 20 équipes. Chaque match oppose deux équipes. Chaque
équipe doit, pendant la saison, rencontrer chacune des 19 autres équipes, une fois sur son
propre terrain, une fois sur le terrain de l'adversaire.
Combien de rencontres faut-il organiser au total ?
Exercices de probabilités
Adil EL MARHOUM Page 3
EXERCICE 7
Quatre hommes et trois femmes vont s'asseoir sur un banc de 7 places. De combien de façons
différentes ces personnes peuvent s'asseoir si les femmes occupent que les places paires ?
EXERCICE 8
On désire ranger sur une étagère quatre livres de mathématiques, six livres de statistiques et
trois livres de gestion. Combien d'arrangement y a-t-il si :
a) les livres de chaque spécialité doivent être groupés ensemble ?
b) les livres de gestion seulement doivent être groupés ensemble ?
EXERCICE 9
On désire former un groupe de 3 filles et 4 garçons choisis parmi un groupe de 5 filles et 8
garçons. De combien de façons différentes peut-on former ce groupe sachant que :
a) n'importe quel garçon ou fille peut être choisi ?
b) une fille particulière doit obligatoirement faire partie du groupe à former ?
c) Deux garçons particuliers ne peuvent être choisis ?
EXERCICE 10
Combien de mots de 3 consonnes différentes et 3 voyelles différentes peut-on former avec 7
consonnes et 5 voyelles ? les mots n'ont pas nécessairement un sens.
Exercices de probabilités
Adil EL MARHOUM Page 4
EXERCICES : CALCUL DE PROBABILITES
EXERCICE 1
Expliquer pourquoi doit-il y avoir une erreur dans chacune des phrases suivantes :
a) La probabilité qu'il pleuve demain est 0,67 et la probabilité qu'il pleuve ou qu'il neige est
0,55.
b) La probabilité qu'un étudiant réussisse son examen de statistique est 0,82 et la probabilité
qu'il réussisse son examen de statistique et mathématique est 0,86.
c) Les probabilités qu'une secrétaire fasse 0; 1; 2; 3; 4; plus de 4 erreurs lors d'un travail de
dactylographie sont respectivement 0,12; 0,25; 0,36; 0,14; 0,09; et 0,07.
EXERCICE 2
Selon le dernier recensement 55 % de la population sont analphabètes et 51 % de la
population sont de sexe féminin. Parmi les femmes, 68 % sont analphabètes.
Calculer la probabilité d'être :
a) Une femme analphabète.
b) Une femme non analphabète.
c) Un homme analphabète.
d) Un homme non analphabète.
e) Une personne est choisie au hasard parmi les analphabètes, quelle est la probabilité qu'elle
soit une femme ?
EXERCICE 3
On forme un comité de 5 membres choisis au hasard parmi 8 personnes dont 3 femmes et 5
hommes.
a) Quelle est la probabilité pour que les trois femmes soient choisies ?
b) Quelle est la probabilité pour que l'une des femmes, au moins, soit choisie ?
c) Quelle est la probabilité pour qu'aucune femme ne soit choisie ?
EXERCICE 4
Un portefeuille comprend 3 actions et 2 obligations.
a) On tire successivement et sans remise 2 titres. Quelle est la probabilité d'avoir une action
et une obligation ?
b) On tire dans le portefeuille un titre et on note sa catégorie. Si c'est une action on la remet
dans le portefeuille sinon on ne la remet pas. On effectue un second tirage. Quelle est la
probabilité d'avoir une action et une obligation ?
Exercices de probabilités
Adil EL MARHOUM Page 5
EXERCICE 5
Une course réunit 15 chevaux est organisé au cours d'une fête. Le public est invité à donner le
tiercé gagnant (numéros des trois premiers chevaux).
Pour une personne qui parierait tout à fait au hasard, quelle est la probabilité de donner le
résultat exact :
a) dans l'ordre (numéros des trois premiers chevaux classés dans l'ordre exact de leurs
arrivées) ?
b) dans le désordre (numéros des trois premiers chevaux classés dans un ordre différent) ?
EXERCICE 6
Trois familles comprennent respectivement 2 garçons et 1 fille; 1 garçon et 1 fille; 1 garçon et
2 filles. Si on choisit au hasard et indépendamment un enfant de chaque famille, quelle est la
probabilité que le groupe des trois enfants ainsi constitréunisse au moins 1 garçon et 1
fille?
EXERCICE 7
Soit A, l'événement tel qu'une famille a des enfants des deux sexes, et B, l'événement tel
qu'une famille a au plus 1 garçon.
a) Montrer que A et B sont des événements indépendants si une famille a 3 enfants.
b) Montrer que A et B sont des événements dépendants si une famille a 2 enfants.
EXERCICE 8
Dans une population de 10000 personnes, il y a 45 % de fumeurs et 35 % sont atteintes de
bronchite. De plus, 65% des personnes atteintes de bronchite sont des fumeurs.
Calculer la probabilité pour qu'une personne choisie au hasard dans cette population soit :
a) Un fumeur bronchiteux.
b) Un bronchiteux non fumeur.
c) Calculer la probabilité pour qu'une personne choisie au hasard parmi les fumeurs soit
atteinte de bronchite.
EXERCICE 9
Sur 60 postulants à l'entrée dans un établissement 40 sont du Sud.
Si 20 postulants sont sélectionnés au hasard, calculer la probabilité pour que :
a) 10 sélectionnés sont du Sud.
b) Pas plus de 2 sélectionnés du Sud.
1 / 20 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !