CH VII – DETECTEURS DE RAYONNEMENTS : SIGNAUX ET BRUITS

ANNEXE AU CH VII
REALISATION D’UN MICROPHONE OPTIQUE :
UN EXCERCICE « D’INGENIEUR »
I - OBJECTIFS DE CE CHAPITRE
En prenant le prétexte de la réalisation d’une détection optique (interférométrique) pour
mesurer le déplacement d’une membrane nous allons découvrir pas à pas les grandeurs à
considérer lorsque l’on utilise un détecteur « réel » tel qu’il apparaît sur une notice technique
dans le catalogue d’un fabriquant.
L’interféromètre, de type Michelson, utilisera pour l’un de ses miroirs une membrane vibrante
métallisée (comme celle d’un microphone à électrets par exemple).
II – QUE PEUT-ON ESPERER DE MIEUX ?
On va prendre comme source un petit laser de faible puissance 1,0
o
=
φ
mW @ nm).
630=λ
On suppose que la réponse d’un détecteur au silicium est 0,3 A/W @ nm.
V
S630=λ
La puissance lumineuse en fonction de la position x du miroir s’écrit :
(
)
(
)
λ
π
+
φ
=
φ
/x2.2cos12/
o
Soit pour de très faibles déplacements :
λ
π
φ
λ
π
=
φ
x
4sin
2
dx
do
dont la valeur absolue est maximum pour
()
2
1k2
x4
π
+=
λ
π
, k entier :
o
max
2
dx
dφ
λ
π
=
φ et 2/
o
φ
=
φ
Ou, si nous regardons la réponse en courant
(
)
(
)
νν
φ
=
φ
=
S/dxddi/dx ,Si
nm/A10 3103,0.
2
dx
di 7-4
λ
π
= et .A10 15,0i -4
=
Le petit signal
δ=δ dx
di
/ix 22 mesurable sera fonction du bruit de photons :
f10 15,0.10 6,1.2fiq2i 4-19-2 δ=δ=δ et Hz/A10 2,2i 12-2 δ
On en déduit le bruit de la mesure :
Hz/m10 7Hz/nm10 3,7x -15-62 =δ
1
Remarques :
1) C’est un chiffre très petit ( fois inférieur à la taille d’un atome d’Hydrogène)
dont nous pouvons discuter de la signification physique : il s’agit ici de mesurer la
4
10~
fluctuation de la valeur moyenne de la position de la membrane vibrante. Si la
thermodynamique (bruit thermique de position) ne vient pas perturber la mesure,
cette limite peut être atteinte.
2) Pour une bande passante typique de microphone de 20 kHz
m1010 2010.7x 123152 =δ
Cette limite est voisine de ce que l’oreille est capable de faire lorsque l’on est placé
dans une chambre sourde.
3) Il nous faut à présent nous poser la question : que va-t-il se passer pour un
système réel ?
Pour répondre à cette interrogation nous allons successivement, dans l’exercice proposé,
considérer les points suivants :
- Comment utiliser la photodiode au Silicium pour obtenir une réponse linéaire avec
des niveaux d’éclairement relativement importants ?
- Comment fonctionne une photodiode réelle, comment expliquer la forme de la
courbe de réponse en fonction de λ… ?
- Quel niveau du signal et quelle bande passante (c’est une question importante pour
un microphone) obtient-on avec différents montages ?
- Que signifient les différents chiffres du catalogue ?
- La sensibilité réelle du montage est-elle différente de la sensibilité « idéale » que
nous venons de trouver en ne tenant compte que du bruit de photons ?
III – LE DETECTEUR REEL* : LES QUESTIONS
1) Montage « Photovoltaïque
a) Est-il préférable de faire une mesure de courant ou de tension lorsqu’on souhaite suivre un
flux lumineux qui varie de plusieurs ordres de grandeur ? situer sur le point de
fonctionnement.
b) En éclairant la photodiode avec un laser HeNe (0,1 mW, λ=630 nm). Quelle est la valeur
de la tension de sortie du montage (b) proposé ?
c) Quel est le rendement quantique de la photodiode ? (nombre d’électrons/nombre de
photons). J.s. Le schéma représente le circuit équivalent de la diode sous
éclairement : c’est à dire le générateur de courant ( ), la résistance de Charge R
-34
10 626,6h =
L
IL etc.
Comment déterminer Rp, RS et CL d’après les données du constructeur ?
Quelle est la tension de sortie VS pour une flux de 0,1 mW avec les montages a) et b)
() ? Quelle est la fréquence de coupure ?
= K10RL
2) Montage « Photoconductif » (avec Polarisation Inverse VI)
* Je remercie Danièle Fournier, Professeur à l’UPMC, responsable de l’enseignement « Traitement du Signal », à
PC en 3ème année pour son aide précieuse sur ce sujet.
2
a) La polarisation de la diode permet d’opérer avec une réponse linéaire aux bornes de RL
dans de meilleures conditions qu’avec un montage P.V. Pourquoi ?
b) On obtient également une réduction Cp. Quelle est la fréquence de coupure pour
VI=50V ?
3) Dans le cas des montages PV et PC, vérifier que la valeur moyenne du NEP conduit à une
valeur de la résistance Rp située dans les limites fournies par le constructeur.
. K/J10 38,1k -23
=
4) Le flux issu du laser He-Ne est à présent modulé en intensité à 1 MHz. Après avoir opté
pour le montage PC ou PV, choisir la résistance de charge maximum qui n’affecte pas le
signal alternatif (sans amplificateur opérationnel). Quelle est la plus petite variation de flux
mesurable ?
5) On veut utiliser cette diode pour mesurer les très faibles déplacements périodiques d’un
miroir de l’interféromètre de Michelson (la source est le laser He-Ne de 0,1 mW).
- A quelle différence de marche doit-on se placer pour avoir le signal maximum ?
Quelle est la sensibilité en A/nm ?
- Quelle est l’amplitude minimum mesurable (pour une bande passante 1 Hz) ?
IV – LE DETECTEUR REEL : LES REPONSES
1) Montage Photovoltaïque
a) On voit que la linéarité n’est obtenue que si on mesure le courant avec un
instrument d’impédance interne très faible (on atteint ainsi Icc). Utiliser un
voltmètre ou un oscillo de grande impédance (Vopen circuit) donne une réponse très
non linéaire (réponse logarithmique).
b) On voit que pour le détecteur standard la sensibilité maximum est ~0,5 à 0,55 A/W
tombe à 0,2 à 0,3 A/W à λ=630 nm (prenons 0,25 A/W). Avec 0,1 mW et l’ampli.
opérationnel avec la résistance de 10
K
.
. Remarquons que vers les grandes
longueurs d’onde la sensibilité diminue et
V 25,010 1,0.25,0.10i.10V -344
S===
0
Vers les courtes longueurs d’onde
ν
n une paire électron-trou. Or pour une
puissance donnée il y a moins de photons par unité de temps lorsque la longueur
d’onde diminue (ou que l’énergie du photon augmente).
c) Le rendement quantique :
ρ
= Nombre de photons/Nombre d’électrons. L’énergie
d’un photon est : .J10 1,3
hc
hE 19-
λ
=ν= D’où
photons/seconde. Comme le courant de 0,25 10
14
10 3mW 1,0
-4 A correspond à 1,5 1014
électrons/seconde on voit que 5,0~
ρ
.
3
d) Rp
()
>M 50 est la pente de la caractéristique au point de fonctionnement. Cp est
la capacité de la jonction qui dépend de la tension appliquée (qui fait varier la zone
de charge d’espace) Cp=1000 pF @ 0 V et Cp=2000 pf @ 5 V.
RS : représente la résistance de contact des électrodes + la résistance de volume.
D’après le texte 2,2 RSCp= (Typical Response). τ
Avec Cp=2030 pF,
=M 50Rp, ns 73
=
τ
.
=
16RS.
Tension de sortie et bande passante (voir courbes)
Montage (a) :
- Le courant maximum dans est de = 10R 4
LµA 60V/R 6,0 L
=
.
- Le courant photo induit est de 25 µA avec 0,1 mW ce qui nous place déjà dans le
coude pas correspondrait à la saturation pour une puissance de 1 mW.
La bande passante est alors :
- En photovoltaïque (V=0) ss ampli op. Cp=2030 pF, la fréquence de
coupure est :
4
L10R =
Hz. 10
CR2 1
f4
pL
c
π
= C’est insuffisant pour un microphone par
exemple.
Montage (b) :
- Avec l’ampli. op. la résistance ramenée à l’entrée est C’est
donc la résistance série qui va nous limiter soit une fréquence de coupure
. 1010/R~ 26
L
Hz. 10 5
CR2 1
f6
pS
L=
π
=
2) Montage dit « photoconducteur »
a) , on va rester plus longtemps linéaire car la polarisation décale la droite
de charge (tant que
4
L10R =
V 6,0iRV LLp
<
+).
b)
Hz. 10 5)210.10 33(1f 54-12
C=π=
3) Les bruits
- En photovoltaïque
Le NEP a pour origine le bruit thermique Rp auquel on ajoute les fluctuations du courant
d’obscurité iD (D comme dark). D’après le constructeur :
1Vi avec fqi2f
R
kT4
iDD
p
2
D++=
V0@
6
nA3
iV5@nA3i or DD ==
4
28-28-28-
2
B10 5,610 2,310 3,3i =+=
(
)
Hz 1f
=
d’où le NEP Hz/W10 55,0/10 5,2
maximum
éSensibilit
i14-14-2
B=== (à comparer aux 2,3 10-14
annoncé mais certaines valeurs étaient extrêmes et pas typiques).
- En photoconducteur
.M 50Rp> Le courant d’obscurité croit et le terme en fqi2 D
domine et
le
26-
2
B10 2,3i =
.Hz/W10 4,255,0/10 2,3NEP 13-26- == Valeur égale à celle fournie par le
constructeur.
4) Si on veut pousser la bande passante à 1 MHz sans avoir à utiliser d’amplificateur on peut
choisir le montage photoconducteur en remplaçant la résistance de charge (qui
donnait 5 10
= 10R 4
L
5 Hz) par pour avoir 1 MHz. = 10 5R 3
L
Avec 0,1 mW le bruit de photons correspondra à un courant de bruit :
Hz/A10 810 25,0.10 2,3i 224-4-19-
2
B==
Soit Hz/A10 8,2i 12-
2
B
(>> au bruit propre).
Ce qui correspond à une variation de flux de :
W/Hz10)10 25,0/10 (2,8mW 1,0 11-4-12
.
5) Ce bruit de photon est très supérieur aux bruits propres de notre montage c’est lui qui va
limiter les performances on va donc retrouver pour les performances de ce montage les
résultats du calcul sur le détecteur idéal.
CONCLUSION ET REMARQUES
- On voit qu’un dispositif réel, utilisé dans de bonnes conditions, atteint sans
difficulté les limites de bruit imposées par la physique. Cest assez fréquent en
optique, à vous d’en tirer parti.
- L’utilisation décrite est une application qui consiste à mesurer une très faible
variation d’un signal important (ici : 10-4 A pour un bruit de 3 10-12 A).
- Une autre utilisation classique d’un détecteur consiste à mesurer un très faible
niveau de signal ; dans ce cas c’est le bruit propre (que l’on déduit du NEP) qui
domine, le bruit de photons étant généralement négligeable pour ce type
d’application.
5
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !