Réponse : La stabilité est importante car nous permet d’utiliser un tableau de meilleure fusion
et ainsi mettre à jour la matrice Cà chaque itération en O(N). On peut considérer un exemple
avec 4 documents et l’algorithme du lien complet et montrer qu’on ne peut pas utiliser un tableau
de meilleure fusion car la stabilité de la meilleure fusion ne s’applique pas.
Question 4 Montrer que la méthode par lien unique est monotone.
Réponse : Si G(r+1)
16=G(r)et G(r+1)
26=G(r), l’inégalité découle de la construction même du
dendrogramme (sinon les deux classes G(r+1)
1et G(r+1)
2auraient été fusionnées avant les deux
classes G(r)
1et G(r)
2).
Supposons donc que G(r+1)
1=G(r). Nous avons :
sim(G(r+1)
1, G(r+1)
2) = max
d∈G(r)
1∪G(r)
2,d0∈G(r+1)
2
sim(d, d0)
Cette dernière quantité est équivalente à :
max( max
d∈G(r)
1,d0∈G(r+1)
2
sim(d, d0),max
d∈G(r)
2,d0∈G(r+1)
2
sim(d, d0),)
et :
max(sim(G(r)
1, G(r+1)
2), sim(G(r)
2, G(r+1)
2))
Mais sim(G(r)
1, G(r+1)
2)≤sim(G(r)
1, G(r)
2)car sinon ce sont les classes G(r)
1et G(r+1)
2qui
auraient été fusionnées à l’étape r. De même, sim(G(r)
2, G(r+1)
2)≤sim(G(r)
1, G(r)
2), ce qui montre
la monotonicité du lien simple.
3