ANNEXE 1
Interaction des particules avec la matière
Pour comprendre le phénomène de scintillation dans les cellules du détecteur, il faut se
pencher sur la modélisation de la perte d’énergie des particules chargées dans la matière, qui
interagissent majoritairement (mis à part l’électron qui perd aussi de l’énergie par
rayonnement de freinage à partir d’une certaine énergie) de manière coulombienne avec les
électrons atomiques. On utilise le fait que le nombre de photons issus de la cellule scintillante
est proportionnel à l’énergie perdue par la particule.
Classiquement, on utilise la formule de Bethe-Bloch, basée sur le calcul de la
probabilité de collision particule-électron. Elle donne l’expression de la perte d’énergie par
unité de longueur d’une particule de charge z et de vitesse réduite β dans un matériau cible
(A,Z) de potentiel d’ionisation I présentant un coefficient d’écran κ :
avec ,
où δ/2 est la correction de densité
et l’énergie de plasma du matériau absorbant.
Ne est la densité électronique du matériau cible.
La perte d’énergie des muons dans le fer, dessinée sur la figure suivante, présente une
décroissance en 1/β² jusqu’à un minimum d’ionisation atteint pour 3 < βγ < 4.
En raison du facteur (ln βγ), la perte linéique d’énergie augmente (effet relativiste,
augmentation logarithmique) jusqu’à atteindre un plateau dit plateau de Fermi ( effet de la
densité).
La perte d’énergie est en général exprimée en densité surfacique ds = ρdx.
ANNEXE 2
Les particules cosmiques
On distingue les particules cosmiques « primaires », issues de la nucléosynthèse
stellaire, (leptons, nucléons ainsi que certains noyaux synthétisés dans les étoiles tels que
l’hélium, le carbone, le fer…) et les particules « secondaires » produites par interaction des
rayons primaires avec d’autres particules.
Mis à part les électrons et les protons cosmiques, les rayons cosmiques arrivant dans
notre atmosphère sont des particules secondaires. Ce peuvent être des électrons, provenant de
la désintégration de mesons non chargés : π0 ---> 2γ (98.8%)
---> e+ + e- + γ (1.2%)
Ce peuvent être également des muons, accompagnés de neutrios provenant de la
désintégration de mesons chargés : π± ---> μ± + νμ (99.98%)
K± ---> μ± + νμ (63.5%)
La relation π0 ---> est la réaction principale des noyaux hadroniques formant
les gerbes (Cf. figure suivante), cascades engendrées par un seul rayon cosmique qui, par
interactions successives avec les particules atmosphériques, provoque une réaction en chaîne
formant, par de mulitples processus (diffusions, captures et désintégrations nucléaires,
désintégrations spontanées…) diverses particules de moins en moins énergétiques.
Les particules incidentes proviennent la plupart du temps de galaxies autres que la
notre (une infime partie étant issue de notre soleil), et ont un temps de vie de l’ordre de la
microseconde dans certains cas (cas du muon). Inutile donc de préciser que celles qui n’ont
pas été ralenties par le vent solaire et parvenant jusqu’à la couche supérieure de notre
atmosphère sont très relativistes, et donc extrêmement énergétiques. Il en résulte des gerbes
au sol dont le rayon peut atteindre plusieurs centaines de mètres. C’est une des raisons pour
lesquelles les détecteurs dédiés à l’étude des gerbes atmosphériques tels que le futur détecteur
AUGER, afin de reconstituer l’ensemble de l’énergie de la gerbe, ont une surface au sol très
importante (plusieurs kilomètres carrés). Une autre raison est le taux infime de particules très
énergétiques parvenant jusqu’au sol sans avoir interagi (ou le moins possible) avec l’air.
Le flux de muons au sol est d’environ 1muon par cm² et par minute (le muon étant la
trace principale de rayonnement cosmique détectable par les scintillateurs à notre niveau).
Il est à noter, au vue de la courbe de Bethe-Bloch de l’annexe 1, que les muons étant
très relativistes, ils se situent sur le plateau de Fermi, laissant ainsi une quantité d’énergie par
centimètre de matière parcouru à peu près constante ; cependant, les fluctuations d’interaction
sont non négligeables. Par la technique de coïncidence verticale, nous sommes en mesure de
sélectionner des muons relativement verticaux, les obligeant à parcourir toujours la même
distance dans le scintillateur. Par abus de langage, on nomme cette quantité d’énergie « MIP »
, alors que ce terme est en principe réservé aux particules se situant dans le « puits » de la
courbe de Bethe-Bloch appelé minimum d’ionisation. (« MIP » signifiant Minimum Ionizing
Particle).
ANNEXE 3
Caractéristiques de quelques éléments du détecteur
et
reconstruction des événements
Le calorimètre électromagnétique ECAL :
70 couches d’absorbant+scintillateur, soit 43.8cm (25 X0)
absorbant : plaques de 2mm de plomb
échantillonnage : cellules de 4mm d’épaisseur de scintillateurs PS Cast Polystyrène
détail des cellules : 1472 4x4 à l’intérieur, 1792 6x6 au milieu et 2688 12x12 en
périphérie
fibres dans la direction transverse : Kuraray Y-11(250) double gainage type S
à l’intérieur Bicron BCF91a au milieu et en périphérie
photomultiplicateurs monoanodes Hamamatsu R5900
6.3x7.8 m
Le calorimètre hadronique HCAL :
5.6 λi d’absorbant+scintillateur
absorbant : plaques de fer de 6mm d’épaisseur
échantillonnage : cellules de 3mm d’épaisseur de scintillateur PS Cast Polystyrène
espaces de 4mm aménagés pour les gerbes électromagnétiques
détail des cellules : 860 13.13x13.13 à l’intérieur et 608 26.26x26.26 en périphérie
photomultiplicateurs monoanodes Hamamatsu R5900
fibres WLS, même principe que le ECAL, Y-11(250) double gainage S
6.8x8.4 m
Les détecteurs de muons :
deux technologies de chambres à muons gaz) : Cathode Pad Chambers (CPC),
détecteurs restant efficaces pour de hautes fréquences ; Multigap Resistive Pad
Chambers (MRPC) placées en retrait derrière les boucliers pour ne pas recevoir trop
d’évènements (limite à 5kHz/cm²)
1 CPC de 0.2m (M1 sur la figure 1 du rapport) et 4 MRCP-CPC de 0.4m (M2M5)
1 premier bouclier de fer de 0.3m, puis trois autres de 0.7m
Voici quelques exemples de reconstruction d’événements afin de mieux comprendre le
fonctionnement de l’ensemble du détecteur :
Un électron incident laissera en théorie un MIP dans le SPD, puis formera
immédiatement une gerbe électromagnétique dans la première couche de plomb. Les
particules chargées ainsi créées (électrons en majorité) laisseront un MIP chacune dans le PS,
puis déposeront dans le ECAL le reste de leur énergie.
Un photon ne laissera pas d’énergie dans le SPD étant donnée sa neutralité électrique.
Il se matérialisera en revanche très vite en une paire e+ e- en traversant le plomb, formant le
même type de gerbe électromagnétique que les électrons. Les particules formées se
comporteront de la même manière que pour un électron, comme décrit ci-dessus.
On voit donc bien ici l’importance du SPD pour différencier un photon d’un électron à
leur entrée dans le calorimètre.
Lorsqu’il s’agit de hadrons chargés (par exemple un méson π+ ), ils déposent un
MIP dans le SPD de par leur charge électrique. En revanche, sa masse étant très
grande devant celle des électrons, les interactions coulombiennes le freinent peu.
La particule arrive alors dans le PS, et laisse à nouveau un seul MIP. Elle peut
ensuite traverser entièrement le ECAL en ne laissant que 1 MIP à chaque traversée
de scintillateur et laisser toute son énergie dans le HCAL (où la densité de noyaux
est plus importante), ou commencer à faire une gerbe hadronique dans le ECAL.
Ce type de gerbe résulte d’interactions nucléaires, et seront donc caractérisées par
un important moment transverse, contrairement aux gerbes électromagnétiques
l’essentiel des particules est produit vers l’avant.
NB : les hadrons ont une probabilité d’interaction plus importante dans le fer que dans le
plomb à masses de fer et de plomb égales. En effet, le rapport Z/A (Cf. formule de Bethe-
Bloch) décroît légèrement lorsque A augmente et la quantité dE/ρdx (MeV.cm²/g) est donc
plus faible pour le plomb que pour le fer. Cependant, la perte par ionisation est négligeable
pour les hadrons, qui n’interagissent fortement qu’avec les noyaux.
Lorsqu’il s’agit de muons, la particule étant élémentaire, et ayant une durée de vie
relativement élevée (environ une microseconde), aucune gerbe ne sera détectée, la
particule laissant uniquement un MIP dans chaque scintillateur traversé. Sa
trajectoire sera en revanche déviée par l’aimant, et elle laissera des traces dans les
chambres à muons M1 à M5.
On comprend ainsi mieux comment, à partir des informations des différents détecteurs du
calorimètre et des détecteurs de muon, constituant le niveau de déclenchement de niveau zéro,
le détecteur peut « online », c'est-à-dire en temps réel, faire un premier tri des événements
intéressants à analyser. Par la suite, grâce notamment aux détecteurs de traces (T1 à T11 sur la
figure 1), on peut reconstituer les trajectoires de particules chargées dans le détecteur.
L’identification d’une particule chargée à partir de sa trace se fait « offline » grâce aux deux
détecteurs RICH (placés avant et après l’aimant de 1.1T afin de reconstituer le moment de la
particule par son rayon de courbure et de retrouver ainsi sa masse, avec sa vitesse que l’on
déduit de la lumière Cěrenkov recueillie) mais aussi grâce aux détecteurs de traces qui
permettent de calculer le moment de la particule.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !