Exercice n°1 : du système à sa modélisation 9 pts

Polynésie 09/2008 Exercice n°1 : du système à sa modélisation (9 points)
Correction © http://labolycee.org
I. Modélisation des ondes sismiques.
1.1. Pour les ondes mécaniques P, la direction de la perturbation et la direction de la propagation est la
même, il s’agit d’une onde longitudinale. Par contre pour les ondes S, la direction de la propagation est
perpendiculaire à la direction de la perturbation, il s’agit d’une onde transversale.
1.2. Dans le texte, on nous dit que les ondes P sont plus rapides que les ondes S, la célérité peut être
une grandeur à utiliser pour comparer la propagation des deux ondes.
2.1. La perturbation a parcouru la distance OM, en une durée t = t1 t0. Alors v =
10
OM
tt
.
1,00 m correspond à 4,0 cm sur le schéma
OM = ? m correspond à 10,0 cm sur le schéma
Ainsi OM = 10,0/ 4,0 = 2,5 m.
v =
,
,
25
0 20
= 13 m.s-1 (12,5 arrondi avec 2 chiffres significatifs = 13)
2.2. La célérité dépend du milieu de propagation, la tension de la corde va modifier ce milieu, donc la
célérité de l’onde dépend de la tension de la corde mais pas de l’amplitude de la perturbation.
2.3. =
ON
v
=
1,00
12,5
= 0,080 s (calcul effectué avec la valeur non arrondie de v)
2.4. Observons le point M : à l’instant t = 0,20 s, le front de la perturbation atteint ce point M. Il va
descendre, puis remonter. Le point N a eu précédemment ce même mouvement, puisqu’il a subi la
même perturbation.
3. T =
1
f
T =
1
100
= 1,00102 s
=
v
f
=
,12 5
100
= 0,125 m = 0,13 m
t (en s)
0,080
O
N
1,00 m
M
x
II. Modélisation de la décroissance radioactive.
2.1. Le radon 220 a un numéro atomique Z = 86, il possède donc 86 protons. Son nombre de nucléons
est A = 220, il possède donc 220 86 = 134 neutrons.
2.2.
220
86Rn
216
84Po
+
4
2He
2.3.
2.4. On trace la tangente à la courbe à la date t = 0 s, elle coupe l’axe des abscisses pour t = .
On lit = 1,0 min.
=
1
=
1
1,0 60
= 1,7×10-2 s-1
2.5. D’après la loi de décroissance radioactive, on a n(t) = n0.e-.t. La modélisation donne
n(t) = 450.e-0,012.t avec t en s.
Par identification = 1,2102 s-1.
2.6. n(t1/2) = n0/2 = n0.
1/2
-λ.t
e
1/2 =
1/2
-λ.t
e
ln(1/2) = ln(
1/2
-λ.t
e
)
ln2 = .t1/2
Soit =
1/2
ln2
t
.
Par mesure graphique on avait t1/2 = 0,8 min,
=
ln2
0,8 60
= 1,4×10-2 s-1.
Bilan : méthode graphique de la tangente à l’origine : = 1,7102 s-1,
modélisation par l’ordinateur : = 1,2102 s-1,
méthode graphique avec t1/2 : = 1,4×10-2 s-1.
Les trois méthodes donnent des valeurs différentes, mais du même ordre de grandeur.
(L’ordinateur donne la valeur la plus proche de la réalité. La méthode graphique de la tangente à
l’origine est la moins précise).
2.7. L’activité d’un échantillon est le nombre moyen de désintégrations qu’il produit par seconde. Elle
s’exprime en becquerel (Bq).
t1/2 correspond à la durée au bout de laquelle la moitié des
noyaux initialement présents dans l’échantillon se sont
désintégrés. Le nombre de noyaux présents est
proportionnel au nombre de désintégrations.
Initialement il y a 450 désintégrations, t1/2 va correspondre
à 225 désintégrations, soit t1/2 = 0,8 min.
t1/2
nb(0)/2
III. Modélisation de la charge d’un condensateur.
3.1. L’armature A du condensateur est chargée positivement : i(t) =
dq(t)
dt
3.2. Par définition de la tension aux bornes d’un condensateur, on a : q(t) = C.u(t).
3.3. En appliquant la loi d’additivité des tensions dans le circuit ci-contre, on a E = uR + u
En appliquant la loi d’Ohm : E = R.i + u
E = R.
dq
dt
+ u
Or q(t) = C.u(t), donc
dq
dt
=
d(C.u)
dt
= C.
du
dt
car C = Cte.
Il vient alors : E = R.C.
du
dt
+ u
3.4. Une solution de cette équation est de la forme : u(t) = E.(1 e-t/)
Par identification E = 5,0 V et 1/ = 1 / R.C = 100 s-1
3.5.
Pour t = , u() = E.(1 e/ )= E.(1 e1)
u() = 5,0 0,63 = 3,2 V
correspond au point d’ordonnée 3,2 V
= 10 ms.
Valeur théorique : = R.C
= 1,0103 10106
= 1,0102 s = 10 ms
Les deux valeurs sont cohérentes.
A
C
R
i
E
u
B
uR
+
IV. Modélisation d’une chute avec frottement.
4.1. Dans le référentiel du laboratoire, supposé galiléen, la bille est soumise à son poids
P
, à la
poussée d’Archimède
F
et aux forces de frottement
f
.
Remarque : les forces sont représentées sans souci
d’échelle et décalées afin de mieux les distinguer.
4.2. Appliquons la deuxième loi de Newton au système :
P
+
F
+
f
= m.
a
Soit
i
le vecteur unitaire sur l’axe( Oz),
P.
i
F.
i
f.
i
= m.a
i
Par projection sur (Oz) :
m.g .V.g k.v = m.
dv
dt
g
..
Vg
m
k
m
.v =
dv
dt
g.(1
.
V
m
)
k
m
.v =
dv
dt
Avec a = g.(1
.
V
m
) et b =
k
m
, on a effectivement l’équation différentielle de la forme a – b.v =
dv
dt
.
Vérifions les valeurs numériques de a et b :
a = 9,81 (1
,,
,
36
3
130 10 4 20 10
32 6 10
 
) = 8,17 m.s-2 = 8,2 m.s-2 convertir V en m3
b =
k
m
=
..6

R
m
b =
,,
,
2
3
6 100 10 150
32 6 10
  
= 8,67 s-1 = 8,7 s-1 convertir R en m
4.3. On détermine la vitesse limite à l’aide du graphique.
Lorsque la vitesse limite est atteinte, la vitesse est constante donc
dv
dt
= 0.
D’après l’équation différentielle, on a a – b.vlim = 0. Donc vlim =
a
b
.
vlim =
,
,
82
87
= 0,94 m.s-1. Les deux valeurs obtenues pour la vitesse limite sont égales.
f
z
O
P
F
i
vlim
5 div 1 m.s-1 5,3 cm
vlim 5,0 cm
soit vlim = 5,0/5,3 = 0,94 m.s-1
5,0 cm
5,3 cm
V. Modélisation et longitude.
5.1. v =
T
T
G.M
(R +h)
v =
 
,
,
-11 24
43
6,67 10 5 98 10
6380 2 0 10 10
 
 
v = 3,89103 m.s-1 = 3,89 km.s-1
Le satellite parcourt son orbite de périmètre 2(RT+h) en une durée égale à sa période T.
v =
()
T
2 R h
T
, donc T =
()
T
2 R h
v
T =
( , )
,
4
2 6380 2 0 10
3 89
 
= 4,26104 s
5.2. Le récepteur GPS est situé au niveau du sol, les ondes parcourent la distance h, à la célérité c :
c =
h
t
, donc t =
h
c
t =
,,

43
8
2 0 10 10
3 00 10
= 6,7102 s
5.3. Pour parcourir une distance d’un centimètre, les ondes mettent une durée t.
c =
dt
, soit t =
d
c
.
t =
,
2
8
1 10
3 00 10
= 31011 s, cette valeur est supérieure à la « précision » des horloges qui est
de 1012 s. La précision est suffisante.
5.4. E = h.
E = 6,63.10-34 9192631770
E = 6,091024 J.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !