V(z1, ..., zn) 0 ≤i<j≤n zi=zj
zi
f:C→Cf(z) = V(z0, ..., zn−1, z)f
n n
fV(z0, ..., zn)V(z0, ..., zn−1)
V(z1, ..., zn)
z0, ..., zn+1 ∈Cw0, ..., wn∈C
P n P (zi) = wi
n∈N?a1, ..., an, b1, ..., bn∈C1≤i < j ≤n ai+bj6= 0
C(a1, b1, ..., an, bn) =
1
a1+b1
1
a1+b2· · · 1
a1+bn
1
a2+b1
1
a2+b2· · · 1
a2+bn
1
an+b1
1
an+b2· · · 1
an+bn
C(a1, b1, ..., an, bn) 0 ≤i < j ≤n ai=aj
bi=bjaibi
f:C\ {−a1, ..., −an} → Cf(z) = C(a1, b1, ..., an, z)
f f(z) = αP(z)
Q(z)α∈C?P Q
n−1n P Q
limz→−an(z+an)f(z)
αC(a1, b1, ..., an−1, bn−1)
C(a1, b1, ..., an, bn)
n∈N Cn[X]Cn
Cn[X]C[X]
Cn[X]n, m ∈N
Cn[X]×Cm[X]
P=Pn
i=0 aiXiQ=Pm
i=0 biXin m
an6= 0 bm6= 0
uP,Q :Cm−1[X]×Cn−1[X]→Cn+m−1[X]
(U, V )7→ UP +V Q .
u
B0= ((1,0),(X, 0), ..., (Xm−1,0),(0,1),(0, X), ..., (0, Xn−1))
B1= (1, X, ..., Xn+m−1)