Nombre d`or et pavages non périodiques de Penrose Les triangles d

Nombre d'or et pavages non périodiques de Penrose
Les triangles d'or:
Il existe deux triangles d'or isocèles:
l'un ABC avec les trois angles aigus, les côtés égaux
ayant pour longueur ϕ le nombre d'or avec AB unité sera
dit de type 1
l'autre EFH avec un angle obtus, les côtés égaux étant
unitaires, le troisième côté mesure ϕ. Il sera dit de type 2
Décomposition par des triangles d'or:
Chacun de ces triangles d'or peut
être partagé en deux triangles d'or,
un de chaque type.
Réitérons ce découpage sur un triangle du premier type et en alternant
découpages des triangles de chaque type, de type 1 pour les étapes 1,
3, 5 ....., de type 2 pour les autres étapes.
Tomettes de Penrose:
L'assemblage de deux triangles d'or de même type
donne une tomette de Penrose. Nous avons 4 types de
tomettes: cerf-volant, flèche et deux types de losanges:
AB
C
ϕ
EF
H
ϕ
ϕ1
11
72° 72° 36° 3
36°
108°
AB
D
E
F
G
H
I
J
AB
C
EF
H
I
J
A
B
C
D
E
F
G H
K
L
NO
P
Q
S
T
Voici les étapes suivantes avec le dessin en
dessous des tomettes de Penrose
engendrées.
Voici un pavage avec 15 itérations (
composé de 1597 triangles élémentaires )
C'est une itération impaire, les tomettes sont
des losanges.
Voici un pavage avec 16 itérations ( composé de 2584 triangles élémentaires )
C'est une itération paire, les tomettes sont des flèches et des cerfs-volants.
Voici donc des exemples de pavages qui ne sont pas périodiques.
Le nombre des triangles de chaque itération redonne la suite de Fibonacci.
Des parties de ces pavages donnent des figures remarquables.
Un pavage partiel pair avec flèches et cerfs-volants
Un pavage partiel impair avec des losanges
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !