E=3F=2[X]
f∈FE
f((x, y, z)) = (x+y)X0+ (x−z)X1−(y+z)X2
f∈ L(E, F )f E F
∀u= (x, y, z)∈E∀v= (x0, y0, z0)∈E∀λ∈
f(u+v) = f((x+x0, y +y0, z +z0))
= (x+x0+y+y0)X0+ (x+x0−z−z0)X1−(y+y0+z+z0)X2
= (x+y)X0+ (x−z)X1−(y+z)X2
| {z }+ (x0+y0)X0+ (x0−z0)X1−(y0+z0)X2
| {z }
=f(u) + f(v)
f(λu) = f((λx, λy, λz))
= (λx +λy)X0+ (λx −λz)X1−(λy +λz)X2
=λ(x+y)X0+ (x−z)X1−(y+z)X2
| {z }
=λ f(u)
f
Ker(f) = {(x, y, z)∈E|f( (x, y, z) ) = 0F}
=(x, y, z)∈3|(x+y)X0+ (x−z)X1−(y+z)X2= 0 2[X]
3S=
x+y= 0
x−z= 0
−y−z= 0
Ker(f) = V ect( (1,−1,1) ) 3
v= (1,−1,1)
f Im(f) = {v∈F| ∃ u∈E v =f(u)}
=P∈2[X]| ∃ (x, y, z)∈3P= (x+y)X0+ (x−z)X1−(y+z)X2.
f((1,0,0)), f((0,1,0)) f((0,0,1)) 3
Im(f) = V ect(X0+X1, X0−X2,−X1−X2)
(f((1,0,0)), f((0,1,0), f((0,0,1)) )
f((1,0,0)) −f((0,1,0)) + f((0,0,1)) = 0F
Im(f)V ect(X0+X1,−X1−X2)F
(X0, X1, X2)F
P F Im(f)V ect(X0+X1,−X1−X2, P ) = V ect(X0+X1,−X1−X2)
rang(X0+X1,−X1−X2, P ) = 2 P=a0X0+a1X1+a2X2
rang
1 0 a0
1−1a1
0−1a2
= 2.
(C3←C3−a0C1) (C3←C3+ (a1−a0)C2)
rang
1 0 a0
1−1a1
0−1a2
=rang
1 0 0
1−1a1−a0
0−1a2
=rang
1 0 0
1−1 0
0−1a0−a1+a2
2
{a0−a1+a2= 0 Im(f) (X0, X1, X2)F
f E F
v= (x, y, z)∈3E Xv=
x
y
z
f(v)F Yf(v)=
x+y
x−z
−y−z
=
110
1 0 −1
0−1−1
x
y
z
f E F M =
110
1 0 −1
0−1−1