ue5-pelluard-le-coeur-et-les-vaisseaux-histo-et

publicité
UE5 – Pelluard
Le cœur et les vaisseaux : embryologie et histologie
I. Introduction et généralités
1. La circulation sanguine
La circulation sanguine c'est :
- le cœur
- les artères (partent du cœur et redistribuent le sang dans l'organisme)
- les veines
- les capillaires (zones d'échange entre le compartiment sanguin et les tissus et inversement)
La quasi-totalité des territoires de l'organisme sont concernés par cette circulation sanguine,
même s’il existe de rares territoires de l’organisme qui ne sont pas vascularisés (cette non
vascularisation est nécessaire à leur bon fonctionnement : épithéliums, cornée, cartilage)
Tous les vaisseaux du corps ont pour caractéristique d’être bordés par un endothélium.
Cette circulation sanguine peut être subdivisée en 2 parties : la circulation systémique et la
circulation pulmonaire.
La circulation sanguine est différente chez le fœtus et évolue le long de la gestation jusqu’à la
mise en place des 2 circulations à la naissance. En effet, le fœtus étant dans la cavité
amniotique ce dernier n’a pas besoin d’utiliser ses poumons.
Les fonctions de cette circulation sont multiples :
- Transport et échanges O2/CO2 (au niveau du poumon, indispensable à tous les tissus)
- Transport et échange de nutriments, déchets, ions
- Cellules sanguines : GR, plaquettes, leucocytes.
- Cellules immunitaires
- Messagers chimiques (hormones, cytokines, facteur de croissance)
II. Embryologie du système cardio-vasculaire
1. Rappels embryologiques
Chronologie :
Fécondation : dans le tiers externe de la trompe
1ère semaine : l’œuf arrive au niveau de l’utérus, il s’implante et a besoin de « se nourrir ». Il
s’opère donc une digestion trophoblastique autour de l’œuf dans la muqueuse utérine. Par
diffusion, les premiers éléments sont échangés entre la muqueuse et l’œuf.
3ème semaine : apparition d’amas (ou îlots) angioformateurs (ébauche de la
vascularisation) et de l'ébauche cardiaque. Les premiers vaisseaux de l'organisme.
4ème semaine : Premiers battements cardiaque (circulation qui commence à l’intérieur de
l’embryon mais aussi jusqu’au placenta qui reflète les échanges avec la mère). Les battements
cardiaques sont évidemment différents de ceux chez l’adulte du notamment à la différence
d’anatomie (cœur à 4 cavité et circulation différente). Au départ le cœur chez l’embryon n’est
qu’un tube muni de cellules myocardiques permettant la progression du sang.
De plus, la 4ème semaine marque le début du cloisonnement du cœur qui va lui permettre de
devenir petit à petit un cœur à 4 cavités.
24ème semaine (= 6ème mois) : hématopoïèse définitive.
Naissance : fermeture du canal artériel et du foramen ovale - étape critique et
fondamentale dans l'évolution du système cardio-vasculaire.
Tout au long de la vie embryonnaire sont mis en place 3 shunts physiologiques. Ces 3 shunts
(canal d’Arantius, canal artériel et foramen oval) sont fermés à la naissance et permettent la
circulation de type adulte.
- Avant la naissance, on a une hémodynamique qui est spécifique à l’embryon, puis au fœtus :
les phénomènes d'apports gazeux (oxygénation) et nutritionnel sont assurés par le placenta, il
n'y a pas d'hématose pulmonaire et la circulation reste interne au fœtus.
- La naissance change fondamentalement l'hémodynamique en séparant le système cardiovasculaire du nouveau-né du placenta et en établissant les circulations artérielle et veineuse
définitives, avec le début du phénomène d'hématose à la 1ère inspiration.
- La naissance est une étape clé dans l'organisation du système cardio-vasculaire. C'est à ce
moment que peuvent se révéler des malformations.
Schéma : Fin de la 3ème semaine (gastrulation puis délimitation = courbure de l’embryon
latéralement et de façon antéropostérieur) : présence d’amas angio-formateurs au niveau de la
paroi de la vésicule vitelline qui font apparaître les vaisseaux et les cellules sanguines :
- la paroi de la vésicule vitelline
- le pédicule embryonnaire préfigurant les vaisseaux ombilicaux allant au placenta,
- la zone cardiogène (ébauche du cœur), c'est-à-dire la zone la plus antérieure de l'embryon
tridermique. Techniquement le futur cœur est sur la tête (à ce stade). C’est grâce à la
délimitation que le cœur va se retrouver au niveau de la poitrine.
A ce stade, on a la préfiguration de ce qui va être les trois vascularisations durant les périodes
embryonnaire et fœtale :
- Une vascularisation à l'intérieur de l'embryon : qui va constituer les 2 aortes (ventrales et
dorsales) paires et symétriques par rapport à la ligne médiane, reliées par les arcs aortiques et
les veines cardinales.
- Une vascularisation extra-embryonnaire: en particulier avec la vésicule vitelline (=
vascularisation vitelline),
- Une vascularisation qui relie l'embryon au placenta avec le pédicule embryonnaire (=
vascularisation placentaire).
A la fin de la 3ème semaine, l'embryon est tri-dermique (membrane pharyngienne composée
de 2 couches, la membrane cloacale composée de 2 couches) et en train de se délimiter, avec
ses trois feuillets : ectoblaste, mésoblaste, endoblaste. C'est là que se met en place la zone
cardiogène (à la partie la plus antérieure de l’embryon) qui va ensuite basculer en position
ventrale au moment de la neurulation (le moment où va se mettre en place le massif facial).
- On va donc avoir un basculement de la zone cardiogène d'une position antérieure à une
position ventrale qui va devenir progressivement l'ébauche thoracique.
A ce stade, on est au début du 2ème mois, lors du phénomène de délimitation de l'embryon
avec la courbure céphalique : mise en place de l'ébauche cardiaque au niveau de ce qui va
devenir le thorax.
L’ébauche cardiaque se met donc en place petit à petit à l’intérieur de l’embryon pour se
développer à l’intérieur d’une cavité (le futur péricarde).
L’embryon repose sur la vésicule vitelline et, grâce à la délimitation, une partie de cette
vésicule va intégrer l’embryon et son toit va permettre de former l’intestin antérieur, moyen et
postérieur dans sa partie antérieure, moyenne, et postérieure respectivement.
Très vite, à la fin du premier mois, on a :
- une ébauche cardiaque située en position thoracique et qui a déjà des battements
cardiaques (donc qui permet déjà une circulation sanguine). Le tube cardiaque est formé d’un
pôle artériel (qui donnera le tronc artériel) au niveau céphalique, et d’un pôle veineux (qui
donnera le sinus veineux) au niveau caudal. Les 2 tubes vont fusionner sur la ligne médiane
pour former le tube cardiaque primitif qui va commencer à battre. Le sang périphérique
arrive au niveau du sinus veineux et partira par le tronc artériel (en passant par les futures
oreillettes et les futurs ventricules)
- une vascularisation intra-embryonnaire
- une vascularisation extra-embryonnaire vitelline (qui est en contact avec l'intraembryonnaire) qui est la vascularisation de la vésicule vitelline, constituée des vaisseaux
vitellins. Les vaisseaux vitellins sont très importants au début, ils sont connectés à l'intérieur
de l'embryon.
- une vascularisation ombilicale qui relie la vascularisation intra-embryonnaire au placenta,
à travers la présence de 2 artères ombilicales et d'une veine ombilicale qui se développe dans
le pédicule embryonnaire (à l’arrière de l’embryon). A l'extrémité des vaisseaux ombilicaux,
dans le placenta, se trouve l'interface entre le sang embryonnaire puis fœtal et le sang
maternel au niveau des villosités choriales (sang fœtal) et de la chambre intervilleuse (sang
maternel). C'est à cet endroit que se font les échanges gazeux et métaboliques nécessaires au
développement embryonnaire puis fœtal.
A ce stade et à cette période, l'ensemble du dispositif est en place. A partir du 1er mois, il va
évoluer avec :
A la fin du premier mois on observe 2 types de circulation :
En rouge foncé : la circulation intra embryonnaire : mise en place avec la formation d’un tube
cardiaque et l’apparition de l’aorte dorsale. Ce tube provient de la fusion de 2 autres tubes de
façonna ne former qu’un seul vaisseau.
En rose : la circulation extra embryonnaire : concerne les vaisseaux qui vont aller irriguer la
vésicule vitelline (même si certains de ces vaisseaux vont ensuite intégrer l’embryon pour
vasculariser le tube digestif), ainsi que les vaisseaux ombilicaux (en théorie, à la fin du
premier mois on a toujours 2 artères et 2 veines, mais plus tard dans l’embryogénèse, il y aura
disparition d’une veine). Les vaisseaux ombilicaux, reliés au placenta au niveau des villosités
choriales où seront effectués les échanges sanguins avec le sang maternel qui se trouve dans la
chambre inter-villeuse. La paroi de la villosité choriale sert de barrière placentaire qui permet
d’éviter le mélange entre le sang maternel et le sang fœtal.
Chez l’embryon et le fœtus, ces 2 circulations sont en continuités.
Il faut savoir qu’au démarrage de l’embryon tout est toujours pair et symétrique. Les
structures inutiles seront ensuite fusionnées, « supprimées » afin de perdre cette symétrie.
Tout comme il existe un système artériel, il existe forcément un système veineux permettant
un retour veineux au niveau du tube cardiaque.
2. Développement du cœur et des vaisseaux
La formation du cœur est indissociable de la formation des gros vaisseaux, car ils proviennent
de la même ébauche anatomique. Ce qui explique la fréquence des malformations associées
du cœur et des gros vaisseaux.
A partir des amas cardiogènes se forment 2 tubes cardiaques qui fusionnent très rapidement
sur la ligne médiane, pour donner le tube cardiaque primitif vers la fin du premier mois au
sein duquel on va distinguer 2 zones :
- le tronc artériel : où le sang va sortir pour rejoindre les aortes.
- le sinus veineux : où arrive le sang des veines cardinales.
Très tôt, on a une orientation de l'ébauche cardiaque avec des territoires qui ne sont pas
encore cloisonnés mais que l'on pressent :
- les oreillettes
- les ventricules
- les gros vaisseaux, plus précisément la transition entre les ventricules et les gros vaisseaux :
le bulbe.
A ce stade, on a une seule cavité à l'intérieur de ces deux tubes cardiaques fusionnés et en
parallèle on a l’apparition du péricarde et donc de la cavité péricardique.
Ici sont représentés les deux tubes endocardiques et leur fusion progressive sur la ligne
médiane. On va aboutir à une cavité unique qui va progressivement s'entourer de tissus
myocardique et être présent à l'intérieur de ce qui est initialement le cœlome intraembryonnaire, qui va se structurer ensuite en cavités thoracique et péritonéale.
Les premiers battements du cœur vont permettre la circulation du sang dans le tube et
participent à la formation du cœur à 4 cavités.
Apparition des battements cardiaques
spontannés au cours de la quatrième
semaine de développement.
L'évolution majeure du cœur est représentée ci-dessous, c’est son cloisonnement en quatre
cavités : deux ventricules et deux oreillettes.
Le processus de cloisonnement va être lancé parallèlement à une flexion du cœur afin de
placer les ventricules en bas et les oreillettes en haut.
La cloison inter-auriculaire va rester perméable pendant la vie fœtale.
Le tronc artériel va permettre la formation de l’aorte et des artères pulmonaires.
Entre les deux ventricules, on va avoir une cloison qui va être d'emblée continue
Entre les ventricules et les oreillettes, on va avoir des cloisons avec une cavité permettant le
passage sanguin des oreillettes vers les ventricules.
Dans les conditions normales, après la naissance, les deux oreillettes sont cloisonnées (pas de
passage de sang entre les deux). Alors que chez l'embryon puis chez le fœtus, on a une cloison
perméable entre les deux oreillettes, permettant le passage du sang oxygéné de l'oreillette
droite vers l'oreillette gauche : on a une communication inter-auriculaire parfaitement normale
avant la naissance mais anormale après la naissance.
Un des phénomènes hémodynamiques à la naissance va être la fermeture de cette cloison
inter-auriculaire pour séparer le sang circulant dans le cœur gauche du sang passant dans le
cœur droit.
- A l'extrémité artérielle du cœur, le tronc artériel va, par l'intermédiaire des arcs bronchiaux,
faire passer le sang dans les aortes dorsales.
- Au niveau du sinus veineux (= le pôle veineux du cœur), arrivent :
 les veines cardinales (intérieur de l’embryon),
 les veines vitellines (en provenance de l'extérieur de l'embryon),
 les veines ombilicales
A ce stade, l'ensemble de l'organisation cardiaque est préfigurée : les ébauches sont en place
et vont évoluer ensemble, ce qui explique que lorsqu'on trouve des malformations cardiaques,
elles sont souvent associées à des malformations des gros vaisseaux car il y a des relations
anatomiques étroites entre l'évolution du cœur et les gros vaisseaux.
A la fin du 1er mois/début du 2e mois, associé à ce cloisonnement, on a une évolution relative
de chacune des cavités cardiaques avec des phénomènes de flexion du tube cardiaque et
des différentes cavités.
A gauche du schéma on observe le bloc primitif. Par multiplication des cellules, cela créé le
mouvement de flexion et de rotation, permettant aux oreillettes de se placer devant les
ventricules.
A partir d'un tube unique sur la ligne médiane, et par la croissance asymétrique de chacune
des cavités (surtout la croissance importante du ventricule gauche), on va avoir à l'intérieur de
la cavité cardiaque en formation des phénomènes de flexion qui vont progressivement
positionner chacune des cavités cardiaques pour acquérir la conformation finale.
Parallèlement à ce phénomène de courbure, on a le cloisonnement des cavités cardiaques.
Ce qu'il faut retenir, c'est que ce cloisonnement préfigure ce que sera le cloisonnement
cardiaque définitif. Cependant il existe des zones de passage sanguin propre à la période
embryonnaire et fœtale : la communication inter-auriculaire physiologique par exemple, qui
va disparaître naturellement à la naissance.
Passage inter-auriculaire = trou de Botal = foramen ovale
Ce cloisonnement se fait en 2 parties : le septum primum (du toit de l’oreillette primitive et
descend vers les bourrelets endocardiques) en forme de demi-lune et forme l’ostium primum
(qui disparaitra complètement), puis le septum secundum (à droite du septum primum, qui
descend le long du septum primum sans se fermer complètement et qui forme le foramen
oval) (après la fermeture de l’ostium primum).
Comme peut le voir sur le schéma ci-dessus, le septum primum est percé (ostium secundum),
et le septum secundum est lui aussi percé (foramen ovale). Ces 2 trous ne sont pas face à face
(ils sont décalés en chicane). Cela forme le shunt foramen ovale.
Pendant la vie fœtale, ce foramen ovale va rester perméable et va permettre à une grosse
majorité du sang oxygéné (arrivant de la veine ombilicale -> au canal d’Arantius -> à la veine
cave inférieure -> à l’oreillette droite) de ne pas passer par le ventricule droit puis par les
poumons (car le sang est déjà oxygéné) et ainsi de gagner plus rapidement l’oreillette gauche,
puis le ventricule gauche afin d’atteindre les organes à oxygéner via l’aorte.
A la naissance une modification des pressions (augmentation de la pression dans l’oreillette
gauche) entraine le rapprochement du septum primum sur le septum secundum. Comme les
trous ne sont pas en face, le sang ne pourra plus circuler (premier cri du nouveau-né.). C’est
une fermeture fonctionnelle dans un premier temps, puis une fermeture anatomique (quand les
2 septums seront collés entre eux).
-
Le cloisonnement inter ventriculaire
La cloison interventriculaire possède 2 portions : une composante membraneuse et une
composante musculaire. Important dans la pathologie (communication interventriculaire qui
persiste après le cloisonnement à cause de petits trous dans la portion membraneuse
(pathologie la plus fréquente et la moins grave) ou dans la paroi musculaire (plus grave, car
souvent associé à d’autres malformations)
- Le cloisonnement atrio-ventriculaire
Ce cloisonnement va permettre la formation de la valve mitrale et tricuspide
- Le tronc artériel
De la même façon, on a aussi une organisation et une évolution du tronc artériel. Ce dernier
est à l'origine de l'aorte et de l'artère pulmonaire, c'est-à-dire des deux vaisseaux qui quittent
le cœur (qui conduisent le sang soit vers la périphérie, soit vers les poumons).
Comme pour les oreillettes, avec le tronc artériel, on a mélange de sang de l'aorte et de l'artère
pulmonaire grâce au canal artériel, qui est physiologique avant la naissance et qui doit se
fermer à la naissance. L’absence de fermeture de ce canal artériel à la naissance provoque des
troubles importants de l’hématose par mélange de sang artériel et de sang veineux.
Le tronc pulmonaire (en avant et à droite) et l’aorte (en arrière et à gauche) se croise à cause
d’une cloison spiralée.
A la naissance, on a cloisonnement du tronc artériel dans les conditions normales : le sang
oxygéné est donc séparé du sang non oxygéné.
Le canal artériel est un shunt complétant le foramen ovale. Il est situé après ce dernier et
permet au peu de sang ayant évité le foramen ovale et se retrouvant dans le ventricule droit de
rejoindre l’aorte pour amener un maximum de sang oxygéné aux organes. Il se fermera au
premier cri du nouveau-né grâce à la cloison musculaire. Ce sera d’abord une fermeture
fonctionnelle puis anatomique.
Pathologie : il existe des enfants ayant un retard de fermeture de ce canal artériel.
Tout comme ce canal peut se fermer trop tard, il peut aussi se fermer trop tôt et peut entrainer
une mort fœtale in utéro. Une façon de fermer ce canal artériel est la prise d’antiinflammatoire chez les femmes On passe au cours du développement, d’une situation paire et
symétrique à une situation asymétrique avec une réorganisation progressive des gros
vaisseaux : avec l’aorte ascendante, la crosse aortique et l’aorte descendante. Ceci va se faire
par des phénomènes de régression d’ébauches, avec notamment la disparition des arcs
aortiques. La persistance de ces arcs provoque des perturbations dans l’organisation des gros
vaisseaux, car dans les conditions normales quelques-uns des 12 arcs aortiques ne
disparaissent pas complètement : certains donnent naissance à l’ébauche des carotides.
II. Embryologie du système cardio-vasculaire
Nous avions vu précédemment qu'au-delà de la formation d'une cavité unique, on avait d'une
part un cloisonnement en 4 cavités qui préfigure les 4 cavités définitives, d'autre part une
organisation des différents segments du tube cardiaque par mouvements de flexion pour
donner le positionnement définitif des 4 cavités cardiaques. C'est un aspect général. A
l’intérieur, on a la mise en place d'une circulation mixte passant du cœur droit au cœur gauche
au niveau des oreillettes avec la communication inter-auriculaire. On a la même chose au
niveau du tronc artériel où le sang communique entre l'aorte et l'artère pulmonaire jusqu'à la
naissance grâce au canal artériel. En conditions normales, ce canal se ferme après la
naissance. Il faut avoir conscience de cette organisation extrêmement complexe de mise en
place à partir des ébauches de la circulation intra-embryonnaire.
1. Le développement des vaisseaux
A. Evolution des arcs aortiques et des aortes primitives
Le schéma de droite est important à connaître, on peut observer le croisement entre l’aorte et
le tronc pulmonaire ainsi que le canal artériel. Tout n’est pas à connaître (ce qui est en haut du
schéma). On a 2 aortes dorsales, 6 paires d’arcs aortiques. Chaque arc va soit disparaître,
soit permettre la formation des vaisseaux adultes.
Il y a la fusion des 2 aortes au niveau de la ligne médiane en position dorsale.
Encore une fois : au départ on est paire et symétrique, puis il y a régression des ébauches
(malformations si il y a mauvaise régression) grâce à un processus moléculaire précis.
On donne l'exemple de l'évolution de la circulation artérielle avec les arcs branchiaux pairs,
les aortes dorsales et ventrales. Il y a une organisation profonde de ces ébauches avec une
disparition quasi-totale des arcs aortiques pour ne laisser subsister qu'une aorte asymétrique
qui est l'aorte définitive, avec la crosse aortique.
Ceci conduit progressivement à la mise en place du système artériel définitif à partir du coeur,
l'aorte issue du ventricule gauche donnant naissance aux carotides et la crosse aortique, avec
l'aorte qui va se diriger en position abdominale.
B. Réseau veineux primitif
On a le même type de réorganisation complexe pour le système veineux. Pour faire simple, les
veines cardinales antérieures (partie céphalique) et postérieures (partie caudale) fusionnent
pour déboucher dans le sinus veineux à la partie postérieure de l'ébauche cardiaque. Elles
drainent tout ce qui est fœtus.
Les veines vitellines sont au contact de l'intestin primitif à la source du système porte
hépatique, c’est-à-dire qu'elles vont s'intégrer à l'intérieur de l'ébauche hépatique pour
constituer les vaisseaux portes (elles drainent la vésicule vitelline).
Les ébauches des veines ombilicales (même si il n’y a en a plus qu’une après) quant à elles,
vont donner la veine ombilicale définitive au niveau du cordon ombilical et elles drainent le
placenta et amènent le sang oxygéné au fœtus.
A bien retenir ce schéma
Le système porte se développe dans le foie à partir des veines vitellines. L’ébauche hépatique
(en marron sur le schéma) se trouve sur les veines vitellines initialement. En même temps que
l’ébauche hépatique et que les hépatocytes vont se multiplier, il y a division des veines
vitellines en maillage, en réseau, que l’on verra ultérieurement, puisque au niveau de notre
foie, il y aura un drainage d’une quantité très importante de sang, pour le détoxifier entre autre
chez l’adulte (pas chez le fœtus). La mise en place de ce maillage se fait très tôt pendant
l’embryologie, ce qui est représenté ici sous forme d’un énorme « gruyère ». C’est donc la
mise en place du système porte adulte.
Le canal d’Arantius (le troisième shunt) se développe au niveau de ce maillage. Le sang
oxygéné, qui arrive du placenta par la veine ombilicale, ne passe pas par le maillage (ce qui
serait une perte de temps car il est déjà pur et oxygéné) pour être détoxifié mais directement
par le canal d’Arantius pour aller dans la VCI puis l’oreillette droite, puis directement dans
l’oreillette gauche par le foramen ovale et directement dans la circulation gauche pour nourrir
les organes. Le peu qui passe de l’oreillette gauche au ventricule droit passe par le canal
artériel pour retourner dans l’aorte. Tout est fait pour que ça passe directement et le plus vite
possible dans le système gauche du fœtus et pour l’oxygéner.
A la naissance, le cordon est clampé puis coupé. Ainsi, le sang qui allait du placenta au fœtus
ne peut plus passer. Il n’y a alors plus de sang dans la veine ombilicale. Cette veine va donc
automatiquement se fermer. Le canal d’Arantius va donc lui aussi progressivement se fermer.
Le sang arrivera à ce moment par le tronc porte et commencera à passer par tout le maillage
qui a été mis en place, et le foie remplira sa fonction de détoxification.
C. Hématopoïèse et angiogenèse
Les premiers vaisseaux ont tous la même origine qui est le mésoblaste extraembryonnaire. C’est donc une origine mésoblastique commune des vaisseaux. Ne pas nous
perdre avec le reste du texte de cette partie elle ne nous embêtera pas avec.
Juste savoir que les vaisseaux et les cellules sanguines ont cette origine commune qui est
mésoblastique.
Ce schéma nous montre l ‘évolution de l’hématopoïèse embryonnaire et fœtale. Elle n’en
parle qu’un peu pour nous parler des cellules sanguines du fœtus. En effet par rapport aux
adultes, ou l’hématopoïèse se fait essentiellement au niveau médullaire (sternum, moelle
osseuse), le fœtus n’a une moelle fonctionnelle que au bout du deuxième voire troisième
mois. On voit donc bien qu’au démarrage elle n’est pas hyper fonctionnelle (droite violette sur
le graphique). Cela vient progressivement. Mais le fœtus a besoin de cellules sanguines bien
plus tôt. Il a tout d’abord une hématopoïèse extra embryonnaire puis surtout une
hématopoïèse extra médullaire (cela signifie en dehors de la moelle) et qui a lieu
essentiellement au niveau du foie et de la rate (hématopoïèse hépato-splénique). Cette
dernière apparaît pendant l’embryologie pour ensuite diminuer quand l’hématopoïèse
médullaire se met en place.
En pratique, apprendre cela c’est pour comprendre que lorsque l’on est en présence d’un
enfant prématuré, et que l’on trouve une hépatomégalie, c’est à dire un gros foie, ce n’est pas
la peine de dérouler tout le chapitre de l’hépatomégalie chez l’adulte. Il faut penser que un
prématuré qui a six ou sept mois a encore beaucoup d’hématopoïèse extra médullaire, donc au
niveau du foie, et cette hématopoïèse a besoin de volume pour fonctionner. Le foie d’un
prématuré déborde donc des côtes, car il une hépatomégalie « physiologique ».
4. Modifications hémodynamiques à la naissance
A. Circuit du sang avant la naissance
Ce schéma est très important. Il montre la
circulation pré natale. En théorie il y a des
codes couleurs normalement. Le sang
oxygéné est en rouge et celui désoxygéné
est en bleu (artères systémiques en rouge et
veines en bleu). Le rose représente ici un
vaisseau ou s’écoule à la fois du sang
oxygéné et du sang non oxygéné. Ce qui
est représenté en jaune marron c’est le foie.
On observe également la veine ombilicale,
l’artère descendante, le cœur et les
poumons.
Explications du schéma :
Le sang oxygéné arrive du placenta par la veine ombilicale. Il ne se perd pas dans le maillage
du foie mais passe directement dans le canal d’Arantius.
Il monte directement dans la veine cave inférieure pour aller dans l’oreillette droite.
De l’oreillette droite il passe majoritairement dans l’oreillette gauche par le foramen ovale. De
l’oreillette gauche il passe dans le ventricule gauche puis dans l’aorte pour ensuite irriguer les
différents organes via les artères.
Une fois qu’il a irrigué les différents organes, il faut qu’il aille se faire réoxygéner. Le sang
passe alors par les iliaques, puis par les deux artères ombilicales et retourne au placenta.
Tout ne passe par de l’oreillette droite à l’oreillette gauche, mais une partie passe dans le
ventricule droit. A ce moment-là, une partie va passer par le tronc pulmonaire pour passer
dans les artères pulmonaires droites et gauches, mais la majorité va passer dans le canal
artériel pour la aussi aller oxygéner les différents organes via l’aorte et aller se faire
réoxygéner en passant par les artères ombilicales.
Ceci se passe in utéro.
B. Modifications hémodynamiques périnatales
A la naissance, il existe 2 phénomènes majeurs indispensables :
1. La fermeture des vaisseaux ombilicaux, avec le clampage du cordon ombilical : une fois
que l’enfant à crier, les artères et les veines vont se spasmer, c’est à dire qu’elles vont se
fermer. Ainsi le sang ne passera plus du placenta à l’enfant. En règle général, c’est à ce
moment-là que le médecin clampe le cordon, mais on comprend donc que sans clamp (en cas
d’accouchement à domicile par exemple) les choses vont quand même bien se faire et la
circulation s’arrêter car ça se spasme. Faute de circulation, le canal d’Arantius va lui aussi se
fermer tranquillement.
2. Le déplissement des alvéoles pulmonaires au niveau des poumons pour tenter une première
respiration. Au moment de ce déplissement, la pression va d’un seul coup augmenter à cause
d’un retour veineux au niveau de l’oreillette gauche. Ce retour veineux va coller les deux
membranes (septum primum et septum secundum) du foramen ovale. On parle de fermeture
fonctionnelle. Le canal artériel lui ne se ferme pas forcément immédiatement.
Schémas à retenir : Toute la partie sur les modifications périnatales sont à connaître
parfaitement car seront un sujet très probable de QCM.
Sur le schéma de gauche, on peut observer la veine ombilicale (en rouge) accompagnée des
deux artères (en violet). On remarque que la veine ombilicale est énorme en comparaison des
artères, du fait que celles-ci sont deux alors qu’il n’y a qu’une unique veine. La veine fait
donc le double du diamètre des artères.
Pour le schéma de droite, c’est la circulation que l’on connaît, c’est à dire oreillette droite ->
ventricule droit -> artère pulmonaire -> réoxygénation dans le poumon -> oreillette gauche ->
ventricule gauche -> aorte.
Il va y avoir une fermeture des vaisseaux ombilicaux, suivie de la fermeture progressive du
canal d’Arantius. Lorsque l’on parle en anatomie de ligaments veineux du foie, on évoque
l’ancien canal. Les artères ombilicales ne disparaissent pas complètement, elles sont de part et
d’autre de la vessie et deviennent les ligaments ombilicaux. La veine ombilicale gauche quant
à elle donne le ligament rond.
On a la fermeture du septum inter auriculaire et donc l’abolition de cette communication inter
auriculaire.
Parallèlement il y a la fermeture du canal artériel et la communication entre l’aorte et l’artère
pulmonaire que l’on va appeler ligament artériel.
Le sang oxygéné au niveau des poumons va suivre son trajet définitif après la naissance, avec
une dissociation du sang oxygéné et non oxygéné.
Rappel : avant la naissance, il y avait mélange des sangs oxygéné et non oxygéné.
5. Malformations
Les malformations cardiaques (quelles qu’elles soient) sont extrêmement fréquentes. Cela
peut être très fréquent pour les malformations non graves comme une petite fuite mitrale ou
une communication interventriculaire. Les conséquences sont donc très variables en fonction
de la nature et de la complexité de la malformation.
Ce qui est très important en revanche c’est le dépistage prénatal car effectivement il y a des
cardiopathies qui sont extrêmement graves (on peut en effet constater que la mise en place des
quatre cavités et des vaisseaux est extrêmement complexe, et que si les branchements ne sont
pas dans le bon sens ou si le cloisonnement n’est pas fait correctement, on peut avoir des
cardiopathies très graves).
Le souci c’est qu’in utéro les malformations ne posent aucun problème. Le cœur du moment
qu’il se contracte avec les différents shunts, il n’y a aucun souci. On ne verra jamais un fœtus
avec des problèmes cardiaques in utéro. Le sang va toujours circuler et il ne manquera pas
d’oxygène car il est oxygéné par le placenta.
Si on ne diagnostique pas les cardiopathies in utéro, c’est au moment que le bébé va sortir et
pousser son premier cri que l’on va se retrouver avec un nouveau-né impossible à réanimer ou
bleu… Il n’y a donc pas de signes d’alertes in utéro.
Les femmes doivent donc impérativement faire toutes leurs échographies, notamment la
deuxième ou il y a des coupes axées sur le cœur.
Les causes des malformations sont très nombreuses : génétiques, chromosomiques,
infectieuses, ou complètement inconnues.
Exemples de malformations :
- Persistance d’une communication inter auriculaire (vu la complexité du cloisonnement du
shunt, statistiquement un défaut est possible).
- Persistance d’un canal artériel perméable.
- Tronc artériel commun
- Anomalies des arcs aortiques
- Transposition des gros vaisseaux : c’est quand la chronologie ne se fait pas bien, on va avoir
l’aorte au-dessus de la cavité droite et le tronc pulmonaire au-dessus de la cavité gauche.
(communication interauriculaire)
Sur les images ci-dessus, il faut imaginer que l’oreillette droite a été ouverte, et qu’on regarde
le foramen ovale de face. Ici, on observe que l’ostium secundum qui apparaît après la
descente et la fermeture du septum primum a complètement « ripé » et a fait plein de petits
trous dans la cloison (photo de gauche).
Dans l’absolu cette malformation n’est pas très grave.
Une autre malformation est due à l’absence de « spirale» des vaisseaux. Ainsi au lieu de se
croiser ils restent parallèles l’un à l’autre.
Il peut aussi y avoir un défaut de cloisonnement du canal artériel si celui-ci ne s’effectue pas
jusqu’en bas du shunt. C’est ce que l’on observe sur les images ci-dessous : on appelle cette
malformation un tronc artériel commun. On n’a donc pas de naissance d’un tronc aortique et
d’un tronc pulmonaire, mais un tronc artériel commun. De ce tronc artériel commun naissent
les artères pulmonaires et les carotides.
Cette pathologie est grave car ce tronc artériel commun se trouve à cheval sur l’oreillette
droite et le ventricule droit et gauche, il y donc des problèmes de communication des sangs
entre eux.
Tout est toujours pair et symétrique, il y a des gènes de la latéralisation.
Parfois cette latéralisation se fait mal, et cela peut ne pas être grave du tout. En effet, si le
gène de latéralisation confond juste droite et gauche, on peut simplement se retrouver avec
quelque chose de complètement inversé et symétrique. Cela peut très bien fonctionner du
moment que tout est inversé et que tout est symétrique.
A droite est illustré tout ce qui est normal :
on a le tronc pulmonaire qui croise l’aorte,
et la crosse de l’aorte descend et elle longe
la colonne vertébrale sur la gauche.
A gauche on observe que tout est inversé,
avec une crosse aortique qui descend à
droite, mais cependant tout est inversé et
tout est symétrique, les vaisseaux sont bien
positionnés et il n’y a pas d’anomalie, ce
n’est pas une anomalie grave.
III. Histologie du cœur
1. Organisation anatomique
Le cœur, dans le sens où on l'entend, tel qu'on veut le décrire sur un plan histologique, est un
ensemble constitué d'un muscle, le myocarde, donc constitué de cellules élémentaires que sont
les cardiomyocytes, cellules musculaires striées.
On va s’intéresser aux oreillettes et aux ventricules mais aussi au tissu nodal (c’est lui qui va
permettre les contractions du cœur). Ce cœur va être régulé aussi grâce au système nerveux
végétatif.
On a le système sympathique qui va accélérer les battements du cœur, et le système
parasympathique qui a tendance à ralentir les battements du cœur.
Ce tissu nodal commence par le nœud sinusal, puis il y a une communication qui se fait par le
nœud atrio-ventriculaire pour aller stimuler le faisceau de His et le réseau de Purkinje.
Ci-dessus nous pouvons observer un cœur de fœtus, car celui d’un adulte est entouré d’un
tissu graisseux empêchant la mise en évidence des vaisseaux coronaires.
Le cœur va avoir trois enveloppes :
- L’endocarde : il borde l’intérieur des cavités et est en contact avec le sang, aussi bien au
niveau des oreillettes, des ventricules et des valves.
- Le myocarde qui est la couche musculaire.
- Le péricarde qui se trouve être la partie la plus externe du cœur.
Les vaisseaux coronaires (extrêmement développés) sont ceux qui apportent l’oxygène au
cœur. Ils sont vitaux pour le cœur. Si jamais ils se thromboses ou s’il se passe quoi que ce
soit, c’est à ce moment-là qu’une partie des cardiomyocytes va se nécroser, provoquant une
insuffisance cardiaque menant à un infarctus, ou juste une séquelle d’infarctus avec une
insuffisance cardiaque derrière ou si c’est massif, c’est le décès sur l’infarctus du myocarde.
L’enveloppe du cœur est importante (le péricarde), car il peut y avoir des pathologies à son
niveau, comme une péricardite, ce qui s’exprime par une inflammation de l’enveloppe avec
du liquide qui se met à l’intérieur. Les patients se présentent alors avec une douleur
correspondant à une péricardite, et on pourra entendre à l’aide du stéthoscope le frottement du
cœur qui bouge dans le péricarde et qui vient s’y frotter.
A l'intérieur des cavités cardiaques, on trouve des valves qui correspondent à du tissu fibroélastique qui assurent le passage du sang entre les cavités ou entre cavités et gros vaisseaux.
Ces valves ont donc un rôle mécanique essentiel dans la circulation du sang à l'intérieur du
cœur. Ainsi le myocarde n’est pas au contact du sang, il en est séparé par l’endocarde et les
valves. On trouve également des piliers, des cordages et des valvules.
Les cardiomyocytes ont une capacité de contractions spontanées, contrairement aux cellules
musculaires striées squelettiques qui nécessitent une innervation, une commande nerveuse.
Cependant il existe quand même une innervation cardiaque : elle ne provoque pas la
contraction, mais module son rythme en l'accélérant ou le ralentissant, via le système ortho ou
parasympathique.
2. Structure des cardiomyocytes
Ce sont les éléments essentiels du cœur. Ils ne sont cependant pas seuls : tissu nodal qui
imprime les impulsions pour faire que notre cœur batte de façon synchrone et que nos
oreillettes et nos ventricules puissent se contracter et être efficace.
Les cardiomyocytes ont une contraction rythmique spontanée, coordonnée par le tissu nodal,
et dont la fréquence est régulée par l'innervation cardiaque. Certains d’entre eux (ceux des
oreillettes) ont la possibilité de produire des hormones (propriétés mixtes de cellules
musculaires et de cellules endocrines). Fonction endocrine.
A. Structure des cellules musculaires et aspects du myocarde
Ce schéma ci-dessous est là pour nous rappeler la structure du muscle strié squelettique en
référence aux 3 types de muscles du tissu musculaire que l'on connaît : le muscle strié
squelettique, le myocarde, et le muscle lisse.
Notons la présence de complexes de
jonction, les stries scalariformes ou disques
intercalaires observables en MO. Une
contribution est mécanique, permettant une
puissance de contraction. Contribution
métabolique : on y trouve aussi des
jonctions de type gap permettant le passage
des ions calcium, pour uniformiser les
phénomènes de contraction. S'il n'y a pas
de synchronisation, on a une contraction
désordonnée. Chaque fibre musculaire va
se contracter pour son propre compte: c'est
le phénomène de fibrillation.
Le muscle strié squelettique (langue,
quadriceps, biceps) constitué de longues
fibres, avec des cellules plurinucléés,
recevant une innervation directement au
contact : les plaques motrices, avec au
niveau de ces fibres, des filaments d'actine
et de myosine organisés de façon
caractéristique en sarcomères donnant
l'aspect strié.
A l'inverse, les cellules musculaires lisses
sont des cellules mononuclées sans
striation n'ayant pas d'organisation en
sarcomères. On a des filaments d'actine et
de myosine qui interagissent dans le
cytoplasme. Elles sont allongées en forme
de cigare.
Le muscle strié cardiaque, les
cardiomyocytes, présentent un aspect strié
avec organisation en sarcomères. Ils ont la
particularité d’être bifurqués à leurs
extrémités pour pouvoir s’interconnecter et
former un réseau en 3D. C’est ce que l’on
appelle la strie scalariforme que l’on voit
en MO, que l’on appelle encore disque
intercalaire. Mais il s'agit de cellules
mononuclées (ou binucléées) qui ne
reçoivent pas d'innervation directe. Avec
des capacités de contraction spontanée.
Donc les stries scalariformes ont 2 fonctions majeures, mécaniques et fonctionnelles,
nécessaires au fonctionnement du muscle cardiaque. On a un réseau capillaire très développé,
directement en contact avec les cardiomyocytes pour apporter entre autre l'oxygène
indispensable au bon fonctionnement.
En MO :
Muscle lisse : quand les fibres viennent vers nous on ne voit pas grand-chose à part des
noyaux. Quand les fibres sont prises longitudinalement, on ne voit pas de limite
cytoplasmique entre les cellules mais on voit ce noyau en forme de cigare.
Muscle strié squelettique : on observe des stries sur une coupe semi-fine. Ces stries
n’existent pas pour le muscle lisse. On observe également des noyaux en périphérie.
Le muscle cardiaque : il est également strié, et les stries sont observables en MO. Sur la
photographie ci-dessus à l’aspect marron (elle ne précise pas la coloration), les stries sont les
bandes marron foncées à l’intersection de deux cellules. A l’intérieur de chaque cellule, ce
sont les stries classiques pour la contraction. On observe également un ou deux noyaux.
Voici de nouveau une image de cardiomyocytes dans laquelle on voit bien l’aspect strié
caractéristique. Chaque cardiomyocyte a en réalité l'aspect qui apparaît ici sur le document de
droite, en cellules uninuclées qui ont 1 ou 2 prolongements. Chacun de ces prolongements va
s'accrocher, s'amarrer à un cardiomyocyte voisin par l'intermédiaire de ces stries
scalariformes. (Donc ici léger artéfact car en réalité il n’y a pas tout cet espace blanc comme
on voit sur l’image en haut et en bas à droite). Cette espace blanc est ici pour nous permettre
de bien observer les bifurcations de chaque cellule.
Le tissu nodal a un aspect complètement différent. Aspect arrondi et relativement spacieux
avec un noyau petit et central.
B. Morphologie du cardiomyocyte
Au microscope optique :
- Petites ramifications,
- Position centrale des noyaux,
- Organisation en sarcomères,
- Nombreux capillaires au contact du tissu musculaire,
- Entre chaque cellule, stries scalariformes (= complexe de jonctions) en escalier (échelle).
- Pour certaines cellules au niveau de l’oreillette : associés aux sarcomères se trouvent des
grains de sécrétions, qui correspondent aux cellules qui produisent les facteurs natriurétiques
(endocrine).
La fibre musculaire cardiaque est un ensemble, elle comprend plusieurs cardiomyocytes.
Si on arrive à voir les stries à l’intérieur du cytoplasme c’est qu’on est en microscopie
électronique.
On se contentera d’être capable en MO de reconnaître la cellule musculaire cardiaque, les
stries scalariforme, le noyau.
Surtout à retenir : Au microscope optique : on ne peut pas définir les diades. On peut
cependant observer les stries scalariformes sans problème.
Au microscope électronique : On peut donc observer en plus tout l’appareil contractile, la
cytomembrane et les diades.
C. Cellules myoendocrines des oreillettes (à bien connaître)
Au niveau des oreillettes, certains cardiomyocytes produisent une hormone, le facteur atrial
natriurétique (ANF). Natriurétique signifie que cela va avoir une action sur le rein. Cette
hormone contribue à la régulation de la pression artérielle (elle la diminue) par action sur le
glomérule et le tube contourné du rein (excrétion accrue de sodium et d’eau) et diminue la
production d’aldostérone par la corticosurrénale. C’est lorsque une quantité anormalement
importante de liquide arrive au niveau de l’oreillette que celles-ci libèrent le facteur.
Ici on observe une cellule particulière, retrouvée au niveau des oreillettes qui est capable de
sécréter des hormones (grains de sécrétions noirs sur le schéma). C’est ce que l’on appelle une
cellule atrial, myoendocrine. Elle est capable à la fois de se contracter et de sécréter une
hormone.
D. Les cellules cardionectrices (le tissu nodal)
Le tissu nodal (cardionecteur) correspond à des cardiomyocytes spécialisés dans la
conduction de l’influx, situés dans différents territoires du cœur, (généralement en position
sous-endocardique), et qui impriment aux autres cardiomyocytes une coordination dans la
contraction (systoles auriculaire, systole ventriculaire provoquant la coordination du
phénomène de contraction) et un rythme (cardiaque) de contraction sous contrôle de
l’innervation végétative.
Il faut donc retenir qu’il y a le nœud sinusal qui donne le battement sinusal, puis on a le nœud
auriculo-ventriculaire et la transmission par les faisceaux de His.
Le fait de savoir qu’il y a des cellules cardionectrices c’est important car on va avoir des
patients qui vont avoir des troubles du rythme cardiaque, et l’intervention sur ces patients peut
être de griller spécifiquement certaines zones du cœur pour éviter que les patients soient en
arythmie.
3. Innervation et vascularisation du cœur
A. Innervation
Cette innervation est mixte, ortho- et parasympathique. Elle agit grâce à des fibres nerveuses
qui libèrent soit :
- de la noradrénaline (orthosympathique) : effet accélérateur sur le rythme cardiaque,
- de l’acétylcholine (parasympathique) : effet inhibiteur.
C’est de la balance entre ces deux stimuli (accélérateur et inhibiteur) que va dépendre le
rythme cardiaque.
B. Vascularisation
Vaisseaux coronaires issus de l’aorte ; la vascularisation est en principe dite terminale, mais il
y a des possibilités d’anastomoses (spontanée) en particulier s’il y a anoxie progressive
(exemple : si il y a développement d’un athérome de manière progressive).
C’est ce que l’on observe sur le schéma ci-dessous. Les vaisseaux se divisent mais il n’y a pas
d’anastomose entre les vaisseaux. Si un quelque chose bouche le vaisseau (rond gris sur ce
même schéma), tout ce qui sera en aval ne sera pas irrigué. Toutes les cellules dépendantes de
ces vaisseaux non irrigués n’ont plus la possibilité de s’oxygéner. C’est pour cela que l’on
parle d’infarctus du myocarde.
Ce mode terminal n’existe pas que dans le cœur. On peut donc également avoir un infarctus
rénal, un accident vasculaire cérébral (exactement le même principe), un infarctus splénique,
et pareil au niveau de la rétine.
Pour les autres organes c’est moins grave car il y aura toujours possibilité d’avoir une
anastomose pour rétablir un flux. Les coronaires peuvent ne pas se thromboser d’un coup. Si
ce phénomène arrive cela signifie que le patient a une pathologie dite athéromateuse, c’est à
dire qu’il y a des plaques d’athérome qui s’installent au niveau des artères, et ces plaques ne
sont en général pas totalement obstructives.
Si cela se fait de manière très progressive, il y a possibilité que des vaisseaux se créent pour
essayer de shunter ce circuit qui se ferme et de créer une circulation collatérale.
On peut ainsi avoir des patients qui ont des coronaires bouchées et qui n’ont pas fait
d’infarctus car ils ont développé une circulation collatérale. Cela suppose que c’est apparu
très progressivement. Malheureusement, dans la plupart des cas cela ne se passe pas comme
ça. Cela arrive beaucoup plus vite et la circulation collatérale n’est absolument pas efficace.
Conséquence : infarctus
Intégrité de la vascularisation coronaire essentielle au bon fonctionnement cardiaque
(contraction, rythme, coordination). Tout phénomène d’anoxie, chronique ou aiguë, a des
retentissements multiples : soit au niveau de la contraction avec destruction des
cadiomyocytes, entraînant une contraction qui va être affaiblie, mais aussi des troubles du
rythme (coordination ou contraction) qui peuvent être graves et causer la mort. On peut ainsi
être en présence de patients qui décèdent des suites d’un infarctus induit par une incapacité
des cellules nodales à faire leur travail convenablement et du coup on va avoir un patient qui
a un trouble rythmique grave alors que finalement tous les autres cardiomyocytes étaient
plutôt en bonne santé. Cela dépend donc aussi du territoire touché.
Question : Les anastomoses qui peuvent se mettre en place si on a une obstruction chronique
c’est autre chose de la circulation collatérale ?
Réponse : Oui ça correspond à la circulation collatérale, qui se met en place de manière
progressive pour contourner cette situation de vascularisation caténale. C’est un phénomène
spontané qui peut être fait chirurgicalement, lorsque qu’on positionne un vaisseau pour courtcircuiter la présence d’un athérome.
3. Histophysiologie : la contraction du cœur
A. Initiation de la contraction et conduction
→ La contraction des cardiomyocytes est initiée par une onde de dépolarisation qui se
propage à travers le tissu nodal.
→ Cette dépolarisation provoque une entrée de calcium et de sodium extracellulaires (sodium
et calcium sont indispensables à la contraction de la cellule). Cette entrée a lieu au moment de
la systole. La contraction est étroitement dépendante de la concentration intracytoplasmique
en calcium.
→ La relaxation survient par arrêt de la dépolarisation (diastole).
→ L’innervation végétative module le rythme de la contraction en agissant sur le rythme de
dépolarisation du tissu nodal. C’est cela qui permet d’accélérer ou de ralentir le cœur.
→ La contraction du myocarde nécessite des apports en énergie et en oxygène
particulièrement importants et constants, d’où l’importance de l’intégrité de la vascularisation
coronaire (toute anoxie prolongée du myocarde entraîne une destruction rapide du tissu
myocardique. Contrairement au tissu musculaire classique, qui même s’il est également
sensible à l’anoxie, est beaucoup plus résistant que le tissu myocardique).
5. Introduction à la pathologie
En tant qu’adulte, si on n’a pas de malformations, ce n’est pas le cœur qui va être malade
mais plutôt la vascularisation qui va être en cause dans les différentes pathologies.
Les trois quarts des pathologies sont donc d’origine vasculaire.
Pathologies d’origine vasculaire (athérome (la plus fréquente)) :
- angine de poitrine : symptomatologie de manque d’oxygène. Ce n’est pas irréversible, il
n’y a pas de nécrose du cardiomyocyte en effet. C’est simplement un signe que les
cardiomyocytes manquent d’oxygène. Elle s’observe dès qu’il est demandé au cœur de fournir
un effort plus important. Comme les coronaires sont rétrécies, l’oxygène ne peut arriver en
grande quantité. En règle générale on donne de la trinitrine aux patients, ce qui va dilater les
vaisseaux pour améliorer l’arrivée d’oxygène. Si le traitement est inefficace ou que le sujet est
trop jeune, on peut être amené à corriger cela par une dilatation chirurgicale des coronaires.
- infarctus du myocarde : aiguë, irréversible. Ici les cellules n’ont plus d’oxygénation du
tout. Ici il faut intervenir très vite, pour tenter de sauver les cardiomyocytes. Si l’intervention
n’est pas très rapide, un cardiomyocyte mort ne peut pas être « sauvé ».
Il y a bien évidemment de nombreux facteurs de risques : âge, diabète, tabac, cholestérol…
Cela peut également toucher les sujets jeunes. Il faut en effet savoir que la plaque d’athérome
est un phénomène inéluctable, qui fait partie du vieillissement. Cela reste anormal à 40 ans
par exemple.
→ L’anoxie entraîne : troubles de la contraction, troubles de la conduction, destruction plus
ou moins importante du myocarde (irréversible). Les conséquences des angines de poitrines
ou des infarctus du myocarde vont dépendre de l’étendue de la lésion et aussi de son
positionnement. La lésion va provoquer soit simplement la destruction des cardiomyocytes,
soit toucher le tissu nodal et donc porter une grave atteinte au phénomène de conduction et de
synchronisation. Les conséquences de la lésion au-delà de la perte de l’efficacité mécanique
du myocarde, comme des troubles du rythme et de la conduction peuvent être tout aussi
graves.
BILAN
- Il faut retenir la chronologie des évènements :
Embryologie du cœur vers la 3-4ème semaine de développement.
Toutes les malformations sont hyper précoces. Penser à faire des examens aux femmes qui ont
été exposées à n’importe quoi en début de grossesse qui pourrait engendrer des
malformations.
- Retenir le cloisonnement, ce qui nous permettra de comprendre les différentes pathologies
(souffles, fuites)
- Retenir les trois shunts (foramen oval, canal artériel et canal d’Arantius). Cela permet de
faire la différence entre la circulation du fœtus et celle du nouveau-né et après la naissance.
- Retenir ce que l’on peut observer en MO
- Retenir que certains cardiomyocytes atriaux sont capables de sécréter des hormones.
- Le fait qu’il y ait une circulation terminale.
Téléchargement