∗
M
G=G0=M i =u=s=t=
G=M×M, G0=M, u(x)=(x, x), t(x, y) =
x, s(x, y) = y, i(x, y)=(y, x)m((z, y),(y, x)) = (z, x)
E M π :E→M
G=E, G0=M, u(x)=(x, 0), s =t=π, i(x, ξ) =
(x, −ξ)m((x, ξ),(x, η)) = (x, ξ +η)
ΓM G =
{(x, γ, y)∈M×Γ×M|x=γy}, G0=M, u(x) = (x, e, x), i(x, γ, y) =
(y, γ−1, x), s(x, γ, y) = y, t(x, γ, y) = x m((x, γ, y),(y, η, z)) = (x, γη, z)
G=M×R∗∪T M ×0, G0=M×R.
u, i, s, t m
M×R∗
T M ×0
M×R∗
T M ×0 (xn, yn, tn)M×R∗
(x, ξ, 0) ∈T M ×0tn→0, xn→x, yn→y
xn−yn
tn→ξ.
G
AG G0G
Gad =G×R∗∪AG×{0}.
5Gad G0
ad =
G0×R. s, t, i, u
G={(x, [γ], y)|x, y ∈M}[γ]
x y G0
M
W(a,[γ],b)={(x, [γxγγ−1
y], y)|x∈U, y ∈V}U, V
x y γx(γy)
U(V)x(y)a(b)
FM
{(x, y)|xRy}
FG={(y, [γ], x) : xRy, γ ∈
C1(F), γ(0) = x, γ(1) = y}[γ]γ