POLYGONES REGULIERS
D
ÉFINITION
: un polygone est dit « régulier »
si ses côtés sont de même longueur et si les
angles entre deux côtés consécutifs sont de
même mesure.
E
XEMPLES
: le triangle équilatéral, le carré ou
encore le dodécagone régulier illustré ci-
contre.
Exemple de calcul
de l’angle entre
deux côtés consécutifs :
avec 12 côtés
Calcul 1 : 360° ÷ 12
Calcul 2 : (180° - 30°) ÷ 2
Calcul 3 : 7× 2
D
ODÉCAGONE
RÉGULIER
NOMBRE DE CÔTÉS ANGLE ENTRE
DEUX CÔTÉS CONSÉCUTIFS
NOM DU POLYGONE
RÉGULIER
3 60° Triangle équilatéral
4 90° Carré
5 108° Pentagone régulier
6 120° Hexagone régulier
ETC. ETC. ETC.
Plus le nombre de côtés augmente, plus la mesure de l’angle
entre deux côtés consécutifs augmente également :
On dit qu’un motif « pave le plan » si en le dupliquant et en assemblant les différentes copies du
motif on peut recouvrir le plan sans chevauchement et sans laisser d’espace.
Exemple : penser à un carrelage.
On dit qu’un pavage est « régulier » si le motif de départ est un polygone régulier.
Remarque : en fait on demande plus précisément que ce polygone régulier soit convexe et que les sommets d’une copie du motif
ne puissent toucher une autre copie du motif qu’en des sommets également.
En fait il n’y a que 3 pavages réguliers possibles : avec des triangles
équilatéraux, des carrés ou des hexagones réguliers.
Pourquoi ?
En un certain sommet, il faut qu’au moins 3 copies du polygone régulier se rejoignent ; concentrons-
nous sur l’une d’elle ; son angle au sommet doit donc mesurer moins d’un tiers de 360°, c’est-à-
dire 120° ou moins ; il n’y a donc que 4 possibilités d’après le tableau vu précédemment ; mais
l’une de ces possibilités ne convient pas : en effet 108 ne divise pas 360…
PAVAGES RÉGULIERS
L
ES
3
PAVAGES
RÉGULIERS
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !