FICHE METHODE 2022 - Projection de forces dans un repere

Telechargé par nicolas.barrois
FICHE METHODE : Application de la loi de NEWTON
Projection d’une somme vectorielle de forces sur des axes Ox et Oy
Rechercher la norme d’une force dans un exercice
Objectifs :
a- Savoir retrouver les coordonnées d’un vecteur force sur des axes Ox et Oy
b- Savoir appliquer la loi de Newton
c- Savoir utiliser la projection de la somme des forces pour rechercher la norme d’une force
dans un exercice
Etape 1 : Rechercher les coordonnées de chacune des forces sur les axes Ox et Oy
.....
......
x
y
F
FF
=
=
Pour t’aider, visionne les vidéos suivantes :
video 1 : « Boite à outil - Projection de vecteur »
https://youtu.be/splFf0nra-w
video 2 : « Méthodes scientifiques -Projection de
forces » jusqu’à 4 minutes ( au-delà c’est le
programme de Terminale)
https://youtu.be/WcaroNOPtfw
Exemple :
Les coordonnées sont positives lorsqu’elles sont dans le même sens que l’axe.
Les coordonnées sont négatives lorsqu’elles sont en sens contraire de l’axe.
Comme les axes sont perpendiculaires, les coordonnées des vecteurs non portés par les axes
s’obtiennent en utilisant les sinus ou les cosinus des angles.
O
x
y
x
y
T
TT
=


=

1x
11y
F
FF
=


=

2x
22y
F
FF
=


=

0
0
- P
+T
cos B x F2
- sin B x F2
- sin A X F1
cos A x F1
Ce système (objet étudié) dont le centre de gravité G, se trouve à l’origine O du repère (référentiel) est
soumis à 4 forces extérieures dont les coordonnées sont :
Etape 2 : Appliquer la loi de newton
extérieures
F k v=  
Nous allons projeter la somme vectorielle :
21 FFTP +++
.
Si le système a un mouvement rectiligne uniforme, la vitesse est constante, cela veut dire que :
11
0
i i i
v v v
+−
 = =
donc cette somme de forces est nulle :
12
0
exrieures
F P T F F= + + + =
Rappel : P = m x g
Etape 3 : Projeter la somme vectorielle des forces sur les axes Ox et Oy
Il faut écrire la somme avec les coordonnées de chaque vecteur sur l’axe considéré.
Projection sur l’axe Ox :
Px + Tx + F1x + F2x = 0
Cela donne :
12
O T F sinα F cosβ = 0+ − +
Projection sur l’axe Oy :
Py + Ty + F1y + F2y = 0
Cela donne :
12
P 0 Fcosα F sinβ = 0− + +
Pour répondre à la question de l’exercice, qui consiste à rechercher la norme d’une force, vous choisirai
l’une ou l’autre des projections ( soit sur Ox soit sur Oy) en fonction des données fournies dans l’énoncé
( valeurs des angle α et β , valeur de g , valeur de la masse m , valeur des forces ).
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !